View clinical trials related to Genetic Diseases, Inborn.
Filter by:Genomic methods can significantly contribute to all facets of precision medicine, from diagnosis to prevention, therapeutic intervention, and management of acute and chronic illnesses. DNA based methods are already having a considerable impact across healthcare in fields that include: public health, infectious disease monitoring, acute and chronic disease, pharmacogenomics, prenatal testing and diagnosis, and therapeutic development. In this proposal, investigators are focusing on the application of genomic methods in precision medicine - specifically on rapid whole-genome sequencing of parents and children (i.e. a trio) for the identification of diseases that have genetic components. Goals Primary goal: is to provide safe rapid whole genome sequencing to Neonatal Intensive Care Unit/Pediatric Intensive Care Unit patients. Secondary goals: 1) Although several groups globally are implementing rapid sequencing of rare disease, these are predominantly in the research space, with many unanswered questions regarding the best way to implement them into a national healthcare system. Each country and their healthcare systems are unique, and valuable knowledge will be gained by implementing this process within a New Zealand context. As part of this the study will measure the impact on the individuals and families. 2) to expand the research team's understanding of non-coding disease-causing variants and methylation changes that contribute to severe disease in early life. Primary Aims 1. To incorporate long-read RNA sequencing data into the diagnostic rapid Whole Genome Sequencing pipeline to provide a direct measure of the functional outcome of the variants of clinical concern. 2. To measure the clinical utility of analysing non-coding variants in the diagnosis of critically ill children who do not have pathogenic, likely pathogenic, or variants of unknown significance for mendelian disorders. 3. To identify, in a real-world setting within the New Zealand health-care system, the clinical and economic effects of deploying rapid Whole Genome Sequencing-informed rapid precision medicine for critically ill children.
This study uses medical records that allow retrospective data extraction of clinical manifestation to assess the natural history of HPDL mutations
This study collects data on children with severe, early-onset obesity.
This research project aims to utilise recent advances in whole genome sequencing of preimplantation genetic diagnosis embryos to investigate the impact of paternal age on de novo mutation rates in IVF embryos. Embryos that are deemed unsuitable for transfer following preimplantation genetic testing for monogenic/single gene disorders (PGT-M) due to the detection of genetic abnormalities will be utilized for this study. These embryos will undergo re-biopsy, and both the biopsied samples as well as the remaining embryo tissue will be subject to whole genome sequencing. This will allow the assessment of de novo mutation rates based on the paternal age.
The Relaxation Response Resiliency Program (3RP) has shown efficacy in improving coping and resilience across diverse populations; however, little is known about how it helps individuals manage the challenges of living with a chronic illness. This study proposes to pilot test an adapted version of the 3RP among patients living with VHL.
The aim of this clinical study is the evaluation of clinical performance of a cell-based non-invasive test technology for fetal aneuploidies and segmental imbalances detection in a high-risk pregnancies population.
This is a placebo-controlled clinical trial to assess whether Guanfacine Extended Release (GXR) reduces aggression and self injurious behavior in individuals with Prader Willi Syndrome (PWS). In addition, the study will establish the safety of GXR with a specific focus on metabolic effects.
Background: The genes a person is born with can sometimes cause serious diseases. Genetic diseases are rare, but they can have a big impact on the people they affect. Researchers have already made great strides in understanding how some genes cause disease. But they would like to have even better tools to analyze and understand genetic data. To create these new tools, they need to gather health and genetic data from a lot of people. Objective: This natural history study will gather medical information from people with genetic conditions. Eligibility: People of any age who (1) are known or suspected to have a genetic condition or (2) have a family member with a known or suspected genetic condition. Design: Participants will come to the clinic for up to 4 days. Tests to be performed will vary depending on the nature of each participant s health issue. The tests may include: Blood and saliva. Blood may be drawn from a vein; cells and saliva may be collected by rubbing the inside of the cheek with a swab. These would be used for genetic testing. Imaging scans. Participants may have X-rays or other scans of their bodies. They may lie still on a table while a machine records the images. Heart tests. Participants may lie still while a technician places a probe on their chest. They may also have stickers attached to wires placed on their chest. Photographs and recordings. Pictures may be taken of facial features, skin changes, or other effects of the genetic condition. Video and audio recordings may also be made. Some people may be able to participate via telehealth.
In 1% of men with infertility, obstructive azoospermia (OA) may occur in congenital absence of the vas (CAVD) or idiopathic obstructive azoospermia . Many studies have shown that the pathogenic genes of OA are CFTR and ADGRG2 genes, and the inheritance mode is autosomal recessive. Although the conventional assisted reproductive technology(PESA/TESA) can help these patients have children, male patients who carry mutations of the disease-causing genes (CFTR and ADGRG2) will also pass on their mutations to the next generation, which will increase the risk of male offspring infertility. Therefore, genetic detection of CFTR and ADGRG2 genes is very necessary for CAVD patients before assisted reproduction. Genetic diagnosis plays a key role in preventing the disease to the offspring.
Preimplantation genetic testing (PGT) has three different testings according to the type of genetic disease, which was classified as PGT-M, PGT-SR and PGT-A. If the couple is tested for two different genetic diseases at the same time, it is necessary to customize the probe and adopt different detection methods, which increases the cost and cycle of testing. Advanced expert pre-experimental analysis is required for PGT-M in couples with monogenic disease. If the family members are unavailable, only the polar bodies, sperms or affected embryos can be used to analysis, which not only increases the risk of failure, but also increases the difficulty of detection. At present, BGI has developed a new single-tube complete Long fragment whole genome sequencing (stLFR-WGS) technology, which uses the same molecular tag on the short read sequencing fragments from the same long DNA molecule to achieve accurate short read sequencing to obtain long DNA information. Multiple genetic abnormalities such as gene variation, chromosome aneuploidy and chromosome structure rearrangement can be directly detected in embryos without pre-experiment of family members, so as to achieve universal normalization of the three PGT methods and solve the PGT detection needs of patients with multiple genetic diseases.