Clinical Trials Logo

Clinical Trial Summary

This study aims to assess the feasibility of assessing acute brain injury using a portable low field MRI in patients on ECMO.


Clinical Trial Description

Extracorporeal membrane oxygenation (ECMO) is a life-saving therapy increasingly used in patients with refractory cardiopulmonary failure. The Extracorporeal Life Support Organization (ELSO) registry recently reported a 58% survival rate among patients who receive ECMO support, showing a significant mortality benefit in patients who would have not survived without ECMO. However, acute brain injury (ABI) is common in patients with ECMO support and leads to devastating consequences with significant morbidity and mortality. The mortality increases more than two-fold when ABI is present for both venoarterial (VA) and venovenous (VV) ECMO patients. The poor prognosis of ABI and neurological complications would suggest potential benefit from stringent and possibly even protocolized neurological monitoring to prevent or minimize further harm. This is particularly important as recent evidence promotes extracorporeal cardiopulmonary resuscitation (ECPR) as a rescue therapy for patients suffering from cardiac arrest of potentially reversible etiology. As clinical experience accumulates and ECPR becomes more widely used, neurological monitoring for complications and prognostication will be imperative for optimizing patient outcomes. Although standardized neurological monitoring improves the detection of ABI, timely diagnosis and management for ABI in patients with ECMO support is still challenging due to the difficulty, impracticality, and danger of transporting ECMO patients to a CT scanner. Often, ECMO patients are unable to be transported to radiology suites because of the patients' persistent cardiopulmonary instability with multiple vasopressor requirements. In addition, even if head CT is performed in these patients, it is limited by poor sensitivity for detecting acute ischemic brain injury. Early neuroimaging is a key neuromonitoring aspect in the clinical evaluation of ABI. However, conventional magnetic resonance imaging (MRI) systems operate at high magnetic field strengths (1.5-3T) that require strict, access-controlled environments. Thus, limited access to timely brain scan with images of sufficient quality remains a significant barrier to effectively monitoring the occurrence and progression of ABI in ECMO. Recent advances in low-field and portable MRI technology have enabled the acquisition of clinically meaningful imaging in the presence of ferromagnetic materials. A very low magnetic field strength, 64 magnetization transfer (mT), approximately 1/23 the field strength of a conventional MRI) provides a 5 Gauss line (safety zone) that is only about 2.5 feet from the center of the scanner. In a previous report, researchers were able to demonstrate the feasibility of a low-field, portable MRI in complex clinical care settings, such as intensive care units, without any adverse events or complications. In addition to reduced projectile motion, the use of low-field MRI may mitigate other safety concerns associated with high-field MRI, such as peripheral nerve stimulation (from gradients), a radiofrequency absorption and heating and acoustic noise. The objective of this study is to assess acute brain injury with low-field, portable MRI of brain in patients with ECMO support. This study will use the Hyperfine portable MRI machine which has FDA 510(k) clearance and is intended for use in intensive care units. The investigators' hypothesis is that low-field, portable MRI can detect ABI in patients with ECMO support, which may decrease the morbidity of patients on ECMO. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05469139
Study type Observational
Source Johns Hopkins University
Contact
Status Completed
Phase
Start date December 10, 2021
Completion date March 11, 2024

See also
  Status Clinical Trial Phase
Recruiting NCT05486559 - The ECMO-Free Trial N/A
Recruiting NCT04674657 - Does Extra-Corporeal Membrane Oxygenation Alter Antiinfectives Therapy Pharmacokinetics in Critically Ill Patients
Not yet recruiting NCT05306392 - Effects of Induced Moderate Hypothermia on ARDS Patients Under Venovenous ExtraCorporeal Membrane Oxygenation N/A
Terminated NCT02280460 - ECMO: Optimization of Its Use
Completed NCT02271126 - TEG Anticoagulation Monitoring During ECMO Phase 1
Recruiting NCT05444764 - PREdiCtIon of Weanability, Survival and Functional outcomEs After ECLS
Completed NCT03659513 - The Effect of ECMO on the Pharmacokinetics of the Drugs and Their Clinical Efficacy
Not yet recruiting NCT06338345 - Pharmacokinetics and Modelling of Beta-Lactam in ECMO-VA Patients N/A
Completed NCT05948332 - Definition and Management of Right Ventricular Injury in Adult Patients Receiving Extracorporeal Membrane Oxygenation
Recruiting NCT04273607 - Anticoagulation-free VV ECMO for Acute Respiratory Failure Phase 2/Phase 3
Not yet recruiting NCT04956497 - Registry Study of Extracorporeal Cardiopulmonary Resuscitation (eCPR) in China
Completed NCT04052230 - Evolution of Diaphragm Thickness Under Veno-arterial ECMO
Completed NCT04620005 - Impact of Extra Corporal Membrane Oxygenation Services on Burnout Development in Intensive Care Units.
Terminated NCT04524585 - Partial Neuromuscular Blockade in Acute Respiratory Distress Syndrome N/A
Recruiting NCT05721105 - Evaluation of Long-term Quality of Life in Children Supported With ExtraCorporeal Membrane Oxygenation (ECMO)
Recruiting NCT06095518 - DIC Markers and Thrombin Generation Parameters in Patients on ECMO Support: a Pilot Study
Recruiting NCT03965208 - Safety and Efficacy of Bivalirudin Versus Heparin for Systemic Anticoagulation in Extracorporeal Membrane Oxygenation Phase 4
Not yet recruiting NCT05814094 - Red Blood Cell Transfusion in ECMO - A Feasibility Trial N/A
Not yet recruiting NCT06319677 - PK/PD Study of Anti-Infective Drugs in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation Treatment
Completed NCT05338593 - Therapy and Outcome of Prolonged Veno-venous ECMO Therapy of Critically Ill ARDS Patients.