View clinical trials related to Epilepsy.
Filter by:The purpose of this study is to evaluate the effect of melatonin for improving sleep in pediatric epilepsy.
Overall, this study will investigate the functional utility of stereotyped HFOs by capturing them with a new implantable system (Brain Interchange - BIC of CorTec), which can sample neural data at higher rates >=1kHz and deliver targeted electrical stimulation to achieve seizure control. In contrast to current closed-loop systems (RNS), which wait for the seizure to start before delivering stimulation, the BIC system will monitor the spatial topography and rate of stereotyped HFOs and deliver targeted stimulation to these HFO generating areas to prevent seizures from occurring. If the outcomes of our research in an acute setting become successful, the investigators will execute a clinical trial and run the developed methods with the implantable BIC system in a chronic ambulatory setting.
The CADET Pilot will investigate the safety and feasibility of deep brain stimulation (DBS) to treat children with Lennox-Gastaut syndrome using a novel DBS device (Picostim DyNeuMo-1). Following a 30-day preoperative/baseline assessment phase, all children will have a neurosurgical procedure to implant the device. Implantation will be followed by a 30-day phase of no stimulation (the device is off / inactive) and then a six-month phase of active stimulation (the device is on / active).
The basic mechanisms underlying comprehension of spoken language are still largely unknown. Over the past decade, the study team has gained new insights to how the human brain extracts the most fundamental linguistic elements (consonants and vowels) from a complex and highly variable acoustic signal. However, the next set of questions await pertaining to the sequencing of those auditory elements and how they are integrated with other features, such as, the amplitude envelope of speech. Further investigation of the cortical representation of speech sounds can likely shed light on these fundamental questions. Previous research has implicated the superior temporal cortex in the processing of speech sounds, but little is known about how these sounds are linked together into the perceptual experience of words and continuous speech. The overall goal is to determine how the brain extracts linguistic elements from a complex acoustic speech signal towards better understanding and remediating human language disorders.
To examine the effects of haloperidol, chlorpromazine, valproic acid and placebo, in conjunction with standardized non-pharmacologic interventions, in the first line treatment of agitated delirium in hospitalized patients with cancer. This double-blind, randomized clinical trial aims to provide evidence on various therapeutic options for palliating delirium, thereby reducing delirium-related distress and ultimately alleviating suffering.
Sudden unexpected death in epilepsy (SUDEP) is regarded as a leading cause of premature death in epilepsy patients. We aim to capture the whole process of SUDEP and near-SUDEP occurrence in patients with epilepsy, and expolre video-electroencephalograph (V-EEG) changes and marker. A Chinese multicenter study was carried out to determine electroencephalo-graph marker related to SUDEP to provide a scientific basis for the prevention of SUDEP in patients with epilepsy.
Previously, scholars called the seizures secondary to autoimmune encephalitis(AE) "autoimmune related epilepsy", but the seizures secondary to AE are usually controlled after the improvement of encephalitis, which does not meet the "persistent" characteristics of epilepsy. Only a subset of patients with seizures lasting several years require long-term Antiseizure medications (ASM). In 2020, the International Coalition against Epilepsy classified it as "acute symptomatic seizure secondary to AE". ASSAE) and autoimmune-associated epilepsy (AAE) . The former is caused by AE, which has clinical manifestations of AE at the same time as epileptic seizures at the beginning or recurrence. The proportion and type of epileptic seizures are different due to different causes, and epileptic seizures are also controlled after the disease is controlled. The latter is that after adequate immunotherapy, there are still persistent seizures, and there is no obvious evidence of inflammatory activity, this type of patient application ASM and immunotherapy is not effective. Secondly, with the deepening of AE research, gradually found that some AAE can still be ASMs cure, such as carbamazepine, ocasepine, lakaosamine. On the one hand, it works by influencing cellular and humoral immune responses. On the other hand, effectiveness of sodium channel blockers in focal epilepsy. Lacosamide is a slow sodium channel blocker that belongs to the third generation of ASM. It has a short half-life and can be quickly increased to an effective dose with a low incidence of adverse reactions. Therefore, the investigators chose to add oral antiepileptic therapy with lacosamide in AAE populations to observe efficacy and safety.
The study will examine the potential efficacy and safety of two pre- and post-biotics on markers for gut inflammation and intestinal microbiota ecology in patients with Rett syndrome. Moreover, this trial will search for possible effects on epileptogenesis and quality of life.
This is a monocentric, open-label clinical study, presenting a retrospective part and a prospective part, studying the data of patients with drug-resistant focal epilepsies and treated with the combination of stiripentol (Diacomit®) and Carbamazepine.
The overall goal of this study is to map the spatiotemporal dynamics of social affective processing and to examine selective modulation of these dynamics in humans undergoing invasive intracranial monitoring for treatment-resistant epilepsy and depression. Pursuing this signal from a novel platform with invasive intracranial recording electrodes provides much-needed spatial and temporal resolution to characterize the neural dynamics of socio-affective processing. The investigators will leverage first-in-human intracranial neural recording opportunities created by a novel therapeutic platform termed "stereotactic electroencephalography-informed deep brain stimulation" (stereo-EEG-informed DBS), as well as the powerful platform of intracranial stereotactic recording and stimulation in patients undergoing epilepsy surgical evaluation at Baylor College of Medicine. The sEEG-informed DBS trial provides unique opportunities for intracranial recording of affect-relevant network regions in patients with treatment-resistant depression (TRD). Recordings in identical regions in epilepsy patients who themselves often demonstrate mild-moderate depressive symptoms will provide a wide dynamic range across the symptom spectrum. To provide critical data on the spatiotemporal dynamics of socio-affective processing the investigators will leverage these two human intracranial recording and stimulation cohorts to study the precise structural, functional, and causal properties of the affective salience network. Greater understanding of the social processing circuitry mediated by the affective salience network may be used to drive therapeutic innovation, pioneering a new paradigm that improves socio-emotional function across a wide variety of neuropsychiatric conditions. The results from this proposal have the potential to improve the lives of patients with dysfunction in social affective processing, with implications for a wide range of neuropsychiatric diseases.