Clinical Trials Logo

Epilepsy clinical trials

View clinical trials related to Epilepsy.

Filter by:
  • Recruiting  
  • Page 1 ·  Next »

NCT ID: NCT06353620 Recruiting - Epilepsy Clinical Trials

Structural-functional Connectome in Drug-resistant Epilepsies and Neurodevelopmental Syndromes With Epilepsy

Start date: February 13, 2024
Phase:
Study type: Observational

Recent studies have shown that the aperiodic part of the signal (neuronal avalanches) of electroencephalography (EEG) contains important information about the dynamics of neuronal networks. Indeed, this has helped to identify functionally altered areas in patients with temporal epilepsy by simply using the resting EEG signal. Furthermore, it has been seen that the propagation of neuronal avalanches (VNs) correlates with the morphological organization of the cerebral cortex. Therefore, NAs represent a measure with direct utility for studying functional reorganization pre and post drug/surgical treatment. In addition, the aperiodic portion of the signal may represent a noninvasive measure of the excitation/inhibition relationship, which is known of being altered both in epilepsy and in some rare neurodevelopmental syndromes (example: Angelman and Dup15q)

NCT ID: NCT06346262 Recruiting - Epilepsy Clinical Trials

Seizure Rescue Medication (RM) as Part of a Comprehensive Epilepsy Self-management Package of Care

Start date: March 5, 2024
Phase: Phase 4
Study type: Interventional

This study will be done in two phases. Using stakeholder input (community advisory board (CAB)), the study team will adapt the SMART program to incorporate education and self-management support for use of Rescue Medication (RM) to manage seizure occurrence among Persons With Epilepsy (PWE) who have repetitive seizures. Additional content/support materials, pending input stakeholder might include posters/hand-outs that present information on the use of RM in a way that is engaging and salient to PWE. It is expected that participants will be in Phase 1 for about 3 months and participate in the CAB 2 or 3 times via zoom for 60-90 minutes/meeting. The advisory board will provide input on needed refinement of an adapted version of SMART based on their individual experiences. It is anticipate the total time commitment to be no more than 6 hours over 3 months, spread out over 2-3 meetings with review of materials possible in between meetings. Phase 2: The investigators will use a 6-month prospective trial design to test engagement with and effects of SMART-RM among approximately 35 adult (≥ 18 years) PWE who have repetitive seizures.

NCT ID: NCT06334029 Recruiting - Epilepsy Clinical Trials

Observational Study of the Structural-functional Connectome in Patients With Epilepsy

Start date: June 22, 2023
Phase:
Study type: Observational

Over the past decade, the concept of the brain as a complex network has extremely influenced the way regarding how the latter is studied (Bartolomei et al., 2017). The structure of both structural and functional networks within the brain has been related to optimal brain functioning (Duma et al., 2022). This evolution of methods and approaches of investigation has directly impacted the study of epilepsy. An early conception of focal epilepsy was that it was related to the activity of the epileptogenic zone, which was identified as the generative element of seizures. However, what was previously considered focal was found to be network alterations at various levels, thus moving from the epileptogenic zone to the concept of the epileptogenic network. Alterations in both the structural and functional network, compared with a healthy control population, have been identified in various forms of epilepsy from focal to idiopathic generalized epilepsy (Lariviere et al., 2022, Zhang et al., 2009). Often the identification and removal of the epileptogenic network, turns out to be the elective therapy in drug-resistant focal epilepsies. The process of diagnosing and defining the epileptogenic network is still debated today. One of the most widely used methods is the implantation of intracranial electrodes for electroencephalographic recording of seizures (Bartolomei et al., 2017). This methodology carries with it several, albeit controlled, risks to the patient. New noninvasive approaches are being developed seeking to integrate information from structural neuroimaging and cortical electrical activity measured by high-density electroencephalography with external electrodes (Duma et al., 2021). These new approaches also include simulative approaches that exploit individualized information such as cortex geometry and patient-specific white matter connections (Courtiol et al. 2020). Thus, starting from a simple structural and diffusion MRI, which is done in routine clinical examinations, multiple localizing hypotheses of the epileptogenic network can be tested using simulative models and then compared with the real EEG signal as validation. Of great relevance is also to understand how the structural-functional connectome relates to cognitive function in patients with epilepsy, who have a high probability of presenting impaired functioning in one or more cognitive domains.

NCT ID: NCT06321822 Recruiting - Epilepsy Clinical Trials

Genetic Diagnosis and Personalized Medicine for Patients With Epilepsy

Start date: August 2, 2021
Phase: N/A
Study type: Interventional

Background Epilepsy is a common neurological disorder. It affects 50 million people worldwide and has the highest incidence in pediatric age. According to the latest classification of the ILAE (International League against Epilepsy), epilepsies are divided into lesional (symptomatic) and non-lesional/genetic forms. Symptomatic causes of epilepsy may include scarring, tumors, strokes, and brain developmental disorders such as dysplasias. In approximately 30% of epilepsies a genetic cause of epilepsy can be hypothesized. Since the identification of the first epilepsy gene in 1995, over the next 25 years over 500 genes associated with epilepsy have been identified. The importance of many genes and many gene variants identified in many genes is not yet clear and the mutations identified in different genes require confirmation with functional studies and confirmation on larger series of patients. Furthermore, the genetic defect underlying many patients with epilepsy remains unknown to this day, despite a high level of gene sequencing effort. Molecular studies on these genes have demonstrated how pathogenic variants on these genes determine a protein dysfunction that can cause neuronal hyperexcitability and pathological synchronization of neuronal networks leading to epileptic seizures and brain dysfunction. A notable complication in the field of epilepsy genetics is represented by the fact that the concept of a gene/a disease is valid only in a few cases, as there is a high phenotypic and genotypic heterogeneity so that a gene can present different types of epilepsy even within the same family. This means that there is a complex multigenic and multifactorial genetic substrate for which the impact of a specific genetic variant is conditioned by variants of other genes. This concept is particularly valid for the most common epileptic forms such as idiopathic generalized epilepsies. The integration of genetic analysis with epileptological characterization in clinical practice is increasingly crucial in defining a clear molecular diagnosis in patients whose disease cause would otherwise remain unknown, and potentially allows avoiding other unnecessary diagnostic investigations. It is therefore expected that this will lead to optimizing clinical management and reducing overall costs over time. The genetic finding can constitute a useful biomarker for defining the outcome of the disease and for guiding clinical decisions such as the best choice of therapy. Despite the advantages, before starting the genetic testing process, patients and their family members should be informed about the ethical issues that may arise from genetic testing, the technical limitations, legal aspects and costs of genetic investigation. Aim of the study Characterization of patients with epilepsy recruited at the Hospital Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico in Milan (Italy) and analysis with exome NGS sequencing of patients with the highest probability of genetic diagnosis with exome (use of a probability score) Endpoints of study are the following: 1. Identification of the genetic cause of the forms of genetic epilepsies with the highest probability of molecular diagnosis with exome 2. Clinical-instrumental and epileptological characterization according to the ILAE classification of patients with epilepsy followed at the Fondazione IRCCS Ca' Granda Fondazione Ospedale Maggiore Policlinico 3. Correlation of clinical and instrumental parameters (in particular EEG and neuropsychological) of epilepsy recorded on the database with etiology, outcome and response to therapy

NCT ID: NCT06310954 Recruiting - Clinical trials for Epilepsy Intractable

Ketogenic Diet in Pediatric Intractable Epilepsy

Start date: August 11, 2022
Phase: N/A
Study type: Interventional

This study aims to evaluate the efficacy of a ketogenic diet in treating pediatric intractable epilepsy and to explore its relationship with changes in inflammatory markers. The investigators plan to recruit 59 participants with intractable epilepsy, 39 of whom will receive a combination of ketogenic diet and conventional antiepileptic drugs, while 20 will receive only conventional drugs. The study will assess the impact of the ketogenic diet on epilepsy control and inflammatory markers, hoping to discover new treatment strategies.

NCT ID: NCT06309966 Recruiting - Focal Epilepsy Clinical Trials

Study to Determine if BHV-7000 is Effective and Safe in Adults With Refractory Focal Onset Epilepsy

RISE 3
Start date: April 2024
Phase: Phase 2/Phase 3
Study type: Interventional

The purpose of this study is to determine whether BHV-7000 is effective in the treatment of refractory focal epilepsy.

NCT ID: NCT06304389 Recruiting - Refractory Epilepsy Clinical Trials

Effect of Blue Light on Vagus Nerve Stimulation in Patients With Refractory Epilepsy

BLUELIGHTVNS
Start date: July 1, 2023
Phase: N/A
Study type: Interventional

Vagus nerve stimulation (VNS) is an adjunctive treatment for refractory epilepsy. Although widely used, there is still a substantial number of patients with insufficient response. Light, and particularly blue light, can stimulate alertness, attention and cognition through modulation of anatomical targets which are common to the vagal afferent network. This project aims at understanding how exposure to blue enriched light may influence VNS effects in patients with refractory epilepsy by exploring the modulation of a series of biomarkers of VNS action. This could possibly lead to new therapeutic strategies to increase efficacy of VNS.

NCT ID: NCT06300814 Recruiting - Clinical trials for Epilepsy in Children

The Effect of Exercise and Music on Sleep, Quality of Life and Emotional State in Children With Epilepsy

Start date: March 1, 2024
Phase: N/A
Study type: Interventional

This study was planned as a randomized controlled experimental study with a pretest-posttest design to determine the effect of parental supervision and video-guided progressive relaxation exercise (PRE) and music recital on sleep, quality of life and emotional states in children with epilepsy aged 9-16 years. The main questions it aims to answer are as follows: According to the evaluation of children with epilepsy, does the progressive relaxation exercise applied to children have an effect on sleep, quality of life and emotional states? According to the evaluation of children with epilepsy, does music recital applied to children have an effect on sleep quality of life and emotional states? The study consisted of 45 children (15 children in the progressive relaxation exercise group, 15 children in the music recital group and 15 children in the control group). Ethics committee approval, permission from the institutions and informed consent of the children were obtained for the conduct of the study. A value of p<0.05 was considered statistically significant in data analysis.

NCT ID: NCT06292494 Recruiting - Clinical trials for Drug Resistant Epilepsy

Focused Ultrasound for Drug-resistant Epilepsy

Start date: January 1, 2024
Phase: N/A
Study type: Interventional

Focused ultrasound (FUS) has been shown to differentially lesion or modulate (excite and inhibit) brain circuit and neural activity across a broad range of acoustic stimulus parameters (intensity, duty cycle, pulse repetition frequency and pulse duration) for decades. From our previous study, FUS sonication may suppress the number of epileptic signal bursts observed in EEG recordings after the induction of acute epilepsy. The presence of the suppressive effect was found in terms of the number of epileptic EEG spikes from the analysis of the unfiltered and theta-band EEG activity, and further discontinue the seizure attacks. EEG activity has also been consistently reported to have a positive correlation with the level of epilepsy, and FUS-mediated reduction of epileptic EEG activity was most notably observed, no matter lesioning or modulating effects. The aims of this study are to demonstrate the safety and efficacy of FUS technology in epilepsy patients and to estimate the optimal parameters of focused ultrasound exposure that will be used in the case of epilepsy.

NCT ID: NCT06284291 Recruiting - Epilepsy Clinical Trials

Transcranial Magnetic Stimulation (TMS) in Genetic Epilepsies

Start date: November 22, 2023
Phase: N/A
Study type: Interventional

Transcranial magnetic stimulation (TMS) uses electromagnetic induction as an efficient, painless, non-invasive method to generate a suprathreshold current at the level of the encephalon, and provide in vivo measurements of cortical excitability and reactivity at the level of the motor cortex (TMS-EMG) or the entire cortical mantle (TMS-EEG). This study proposes TMS measurements as a diagnostic tool in patients to understand mechanisms of epileptogenesis related to genetic mutations, and prognostic to guide and monitor precision treatments.