Clinical Trials Logo

Epilepsy clinical trials

View clinical trials related to Epilepsy.

Filter by:

NCT ID: NCT05493722 Recruiting - Clinical trials for Deep Brain Stimulation

Optimization of Deep Brain Stimulation Parameters in Patients With Medically Refractory Epilepsy

Start date: September 15, 2023
Phase: Early Phase 1
Study type: Interventional

Deep brain stimulation (DBS) is used to treat epilepsy in cases where patients are medically refractory and are not candidates for surgical resection. This therapy has been shown to be effective in seizure reduction, yet very few patients achieve the ultimate goal of seizure freedom. Implantable neural stimulators (INSs) have many parameters that may be adjusted, and could be tuned to achieve very patient specific therapies. This study will develop a platform for stimulation setting optimization based on power spectral density (PSD) measures.

NCT ID: NCT05485649 Recruiting - Epilepsy Clinical Trials

Clinical Outcomes of Pregnant Individuals With Epilepsy - Prospective Study

Start date: July 20, 2022
Phase:
Study type: Observational

The aim of this study is to investigate the pregnancy, delivery, neonatal, and epilepsy outcomes in individuals with epilepsy undergoing pregnancy at the Maternal and Infant Health Programs at the University Health Network - Sinai Health and followed for epilepsy at the Toronto Western Hospital Epilepsy Clinic. In particular, we are interested in the association between following recommended epilepsy management guidelines for pregnant individuals with epilepsy and those aforementioned outcomes.

NCT ID: NCT05485558 Recruiting - Clinical trials for Drug Resistant Epilepsy

the Safety and Efficacy of N-acetyl Cysteine in Children With Drug-Resistant Epilepsy

Start date: September 15, 2022
Phase: Phase 2
Study type: Interventional

This study aims at investigating the possible efficacy and safety of N-acetyl cysteine as adjuvant therapy in the treatment of drug-resistant epilepsy

NCT ID: NCT05472389 Recruiting - Epilepsy Clinical Trials

Neurodevelopmental Impact of Epilepsy on Autonomic Function in Dravet Syndrome

AUTONOMIC
Start date: October 14, 2022
Phase: N/A
Study type: Interventional

Dravet Syndrome (DS) is a severe epileptic encephalopathy, which main cause is mutations of SCN1A, the gene coding for the Nav1.1 voltage-gated sodium channel. DS is characterized by childhood onset, severe cognitive deficit and drug-resistant seizures, including several generalized convulsive seizures per day, frequent status epilepticus and high seizure-related mortality rate. Sudden and unexpected death in epilepsy (SUDEP) represents the major cause of premature deaths. The risk of SUDEP is thus about 9/1000-person-year in comparison with about 5/1000-person-year in the whole population of patients with drug-resistant epilepsies. Experimental and clinical data suggest that SUDEP primarily result from a postictal central respiratory dysfunction. SUDEP in DS, might be the result of a seizure-induced fatal apnea in a patient who had developed epilepsy-related vulnerability to central autonomic and/or respiratory dysfunction. However, a key clinical issue which remains to be addressed is the temporal dynamics of the onset and evolution of the autonomic vulnerability in these patients. The main clinical risk factor of SUDEP is the frequency of convulsive seizures and the SUDEP risk can vary along the evolution of epilepsy. Although non-fatal seizure-induced ataxic breathing can be observed in patients with DS, whether or not repetition of seizures results in long-term alterations of breathing remains unclear. In the AUTONOMIC project, it will be investigate in a homogenous population of patients with DS the exact interplay between epilepsy-related cardiac and respiratory alterations on the one hand and the relation between the underlying neurodevelopmental disease, the repetition of seizure per se and these epilepsy-related autonomic alterations on the other hand. Autonomic functions will be investigated in the inter-ictal period (i.e. in the absence of immediate seizures, Work Package 1 (WP1)) and in the peri-ictal period, i.e. in the immediate time before, during (if possible) and after seizures (WP2). A multicenter cohort will be constituted, allowing to collect the inter-ictal and ictal cardio-respiratory data required in the 2 WP. The study will be sponsored by the Lyon's University Hospital. Patients will be recruited over a period of 24 months in one of the three participating clinical center. All patients will first enter in a prospective baseline period of 3 to 6 months duration in order to collect seizure frequency. After this period, all patients will then undergo a 24-48 hours video-EEG recordings as part of the routine clinical care. The monitoring will also include a full-night polysomnography. This patients will be eligible for inclusion in an extension follow-up study will monitor vital status every year in order to investigate long-term mortality, including SUDEP. The AUTONOMIC project will provide important results which will pave the way to develop and eventually validate therapeutic intervention to prevent SUDEP. By deciphering the exact interplay between epilepsy-related cardiac and respiratory alterations on the one hand and the relation between the underlying neurodevelopmental disease, the repetition of seizure per se and these epilepsy-related autonomic alterations on the other hand, the project will primarily deliver clinically relevant biomarkers.

NCT ID: NCT05469373 Recruiting - Epilepsy Clinical Trials

ESIS in Pediatric DRE

Start date: February 17, 2022
Phase:
Study type: Observational

The main reason for this research study is to gain information about how the brain makes seizures by causing seizures using very small amounts of current, or electrical stimulation. Using small amounts of current to cause seizures (or stimulate) is not new at CCHMC - it is part of routine clinical practice for some patients at some electrodes. This study differs from routine clinical care in that all study patients will undergo electrical stimulation in all or nearly all electrode contacts. The study team is doing this because there is promising data in adult patients that stimulating comprehensively (targeting all or nearly all of the electrode contacts) helps define the seizure network. Defining the seizure network in turn helps the medical team plan surgery. So far, there is not as much published data on seizure stimulation for pediatric patients. This research study thus has the potential both to help individual patients (by providing specific information about your seizure networks) and to help pediatric patients with epilepsy in general (by increasing our understanding of stimulated seizures in children, teenagers and young adults).

NCT ID: NCT05459090 Recruiting - Clinical trials for Drug Resistant Epilepsy

Functional Study of Inhibitory Neurotransmission in the Human Epileptic Brain.

Start date: July 29, 2022
Phase:
Study type: Observational

Epilepsy is a neurological condition that afflicts 1% of the world population. 30% of patients become drug-resistant to classic antiepileptic treatment and only a small percentage, 5%, can undergo a neurosurgical resection of epileptic focus and recover almost completely from symptoms. To date, an imbalance between inhibitory and excitatory neurotransmission has been well accepted as the main root cause of epilepsy. A better understanding of the molecular mechanisms of this can lead to developing new therapeutic strategies. The investigators of the project want to describe the functional alteration of GABA- A receptor, the main actor of inhibitory neurotransmission in the central nervous system and characterize its subunit composition in the epileptic foci of patients with temporal lobe epilepsy. The authors, also, want to modulate, by means of selective neuroactive molecules, the function of this receptor to increase the inhibitory tone in the epileptic brain.

NCT ID: NCT05450978 Recruiting - Epilepsy Clinical Trials

Physiological-based Pharmacokinetics Approach to Medication Exposure During Pregnancy and Breastfeeding

PBPK
Start date: July 20, 2022
Phase:
Study type: Observational [Patient Registry]

This project focuses on anti-seizure medication (ASM) clearance and physiological factors determining blood concentrations in pregnant adult women with epilepsy and amounts of exposure to their unborn children and nursing infants.

NCT ID: NCT05450822 Recruiting - Epilepsy Clinical Trials

Precision Medicine in the Treatment of Epilepsy

BDE
Start date: February 18, 2022
Phase:
Study type: Observational

Primary objectives: The purpose of this study is to identify single and composite biomarkers (from neuroimaging, electrophysiological, and non-imaging biological measures), clinical measures (from cognitive, psychometric, and behavioral test scores), and risk/protective factors (e.g., from medical history, socioeconomic status, coping, lifestyle) that can: 1. Predict antiseizure medication (ASM) treatment outcome, psychiatric, cognitive, or behavioral comorbidities, and quality of life in newly diagnosed epilepsy patients (Cohort II-III). 2. Predict a second epileptic seizure/epilepsy diagnosis and behavioral, cognitive, psychiatric dysfunction and quality of life in patients after a first epileptic seizure (Cohort I).

NCT ID: NCT05443958 Recruiting - Epilepsy Clinical Trials

The Role of Intracranial Electroencephalography (IEEG) in the Localization of Epileptogenic Zones (EZ) and Its Relationship With Prognosis

Start date: July 1, 2022
Phase:
Study type: Observational

The mechanism of epilepsy pathogenesis is complex and not fully defined, and about 20-30% of patients with seizures that cannot be completely controlled by drugs become drug-resistant epilepsy. For focal drug-resistant epilepsy, surgical removal of the epileptogenic zone can control seizures, but the overall seizure-free rate in the long term after surgery is 60-70%, and the results are still not satisfactory. Accurate assessment of the location and extent of the epileptogenic zone and its adequate excision are prerequisites for the success or failure of surgery. Intracranial EEG (iEEG) has been shown to be the most accurate method for determining the location and boundaries of the epileptogenic zone. It can selectively record the local cortical electrical activity through intracranial electrodes and achieve high temporal resolution for long-range recording, reliably reflecting the continuous dynamic changes of EEG during interictal and ictal periods. The in-depth analysis of iEEG can improve the efficacy of epilepsy surgery and provide important information to reveal the pathogenesis of epilepsy.

NCT ID: NCT05439876 Recruiting - Clinical trials for Epilepsy in Children

Getting SMART for Pediatric Epilepsy

Start date: July 18, 2022
Phase: Phase 2/Phase 3
Study type: Interventional

The purpose of this study is to evaluate the effect of melatonin for improving sleep in pediatric epilepsy.