View clinical trials related to Ependymoma.
Filter by:This molecular biology and phase II trial studies how well imetelstat sodium works in treating younger patients with recurrent or refractory brain tumors. Imetelstat sodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
The purpose of this study is to see if vaccination with HLA-A2 restricted peptides, combined with the immunoadjuvant imiquimod is safe and can induce immune responses in children with recurrent ependymomas. Eligible patients are stratiļ¬ed by primary tumor location.
This is a single-center, open-label, non-randomized, Phase I/IIa study to investigate the safety, tolerability, and antitumor efficacy of AXL1717 (picropodophyllin as active agent formulated in an oral suspension; PPP) in patients with recurrent malignant astrocytomas (glioblastoma, gliosarcoma, anaplastic astrocytoma, anaplastic oligodendroglioma, anaplastic oligoastrocytoma, and anaplastic ependymoma). Patients will be treated for up to 5 cycles. A treatment cycle is defined as 28 days+7 days rest (28+7 days during cycle 1 to 4, and 28 days during cycle 5). The following cycle will not be started until the treatment continuation criteria are fulfilled. Concomitant supportive therapies will be allowed.
This is a phase I study to investigate the safety and pharmacokinetics of weekly 5-fluorouracil (5-FU) administered as a bolus dose in children and young adults with recurrent or refractory ependymoma. The results from this study will inform a subsequent phase II St. Jude investigator-initiated trial.
This phase II trial studies how well giving hypofractionated radiation therapy together with temozolomide and bevacizumab works in treating patients with high-grade glioblastoma multiforme or anaplastic glioma. Specialized radiation therapy, such as hypofractionated radiation therapy, that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving hypofractionated radiation therapy together with temozolomide and bevacizumab may kill more tumor cells.
This phase II trial studies how well sunitinib malate works in treating younger patients with recurrent, refractory, or progressive malignant glioma or ependymoma. Sunitinib malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This study will analyze the effects of radiation given to children who have tumors of the central nervous system (CNS). Researchers want to learn more about changes in the quality of life that patients may experience as a result of radiation. Patients ages 21 and younger who have a primary CNS tumor and who have not received radiation previously may be eligible for this study. They will have a medical history and physical examination. Collection of blood (about 2-1/2 tablespoons) and urine will be done, as well as a pregnancy test. Patients will complete neuropsychological tests, which provide information about their changes in functioning over time. An expert in psychology will give a number of tests, and the patient's parents or guardian will be asked to complete a questionnaire about the patient's behavior. Also, patients will be given a quality of life questionnaire to complete and vision and hearing tests. The radiation itself is prescribed by patients' doctors and is not part of this study. Magnetic resonance imaging (MRI) will give researchers information about the tumor and brain, through several scanning sequences . MRI uses a strong magnetic field and radio waves to obtain images of body organs and tissues. Patients will lie on a table that slides into the enclosed tunnel of the scanner. They will need to lie still, and medication may be given to help them to do that. They may be in the scanner for up to 2 hours. As the scanner takes pictures, patients will hear knocking or beeping sounds, and they will wear earplugs to reduce the noise. A contrast agent will be administered, to allow images be seen more clearly. Blood and urine tests will be conducted after the first dose of radiation. MRI scans will be done 2 weeks after patients finish radiation therapy and again at 6 to 8 weeks, 6 months, 12 months, and yearly. Also at those follow-up periods, patients will undergo similar procedures as previously, including blood and urine tests and neuropsychological testing. Patients can remain in this study for 5 years.
This research trial studies tumor samples from patients with ependymoma treated on the Children Oncology Group ACNS0121 trial. Studying samples of tumor tissue from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer. It may also help doctors find better ways to treat cancer.
Patients with relapsed medulloblastoma, ependymoma and ATRT have a very poor prognosis whether treated with conventional chemotherapy, high-dose chemotherapy with stem cell rescue, irradiation or combinations of these modalities. Antiangiogenetic therapy has emerged as new treatment option in solid malignancies. The frequent, metronomic schedule targets both proliferating tumor cells and endothelial cells, and minimizes toxicity. In this study the investigators will evaluate the use of biweekly intravenous bevacizumab in combination with five oral drugs (thalidomide, celecoxib, fenofibrate, and alternating cycles of daily low-dose oral etoposide and cyclophosphamide), augmented with alternating courses of intrathecal etoposide and cytarabine. The aim of the study is to extend therapy options for children with recurrent or progressive medulloblastoma, ependymoma and ATRT, for whom no known curative therapy exists, by prolonging survival while maintaining good quality of life. The primary objective of the MEMMAT trial is to evaluate the activity of this multidrug antiangiogenic approach in these heavily pretreated children and young adults. Additionally, progression-free survival (PFS), overall survival (OS), as well as feasibility and toxicity will be examined.
The best treatment for recurrent cancers or those that do not respond to therapies is not known. Typically, patients with these cancers receive a combination of cancer drugs (chemotherapy), surgery, or radiation therapy. These treatments can prolong their life but may not offer a long-term cure. This study proposes using a drug called Sirolimus in combination with common chemotherapy drugs to treat patients with recurrent and refractory solid tumors. Sirolimus has been found to inhibit cell growth and to have anti-tumor activity in pediatric solid tumors in previous studies and, therefore, has the potential to increase the effectiveness of the chemotherapy drugs when given together. This study wil investigate the highest dose of Sirolimus that can be given orally with other oral chemotherapy drugs. Cohorts of 2 subjects will be started at the minimum dose. The dose will be increased in the next 2 subjects as long as there were no major reactions in the previous groups. This study will also seek to learn more about the side effects of sirolimus when used in this combination and what effects the drug has on the white cells and the immune system. Successful use of this drug will impact the cancer population greatly by providing an increased chance of survival to those with resistant or recurrent cancers.