Clinical Trials Logo

Ependymoma clinical trials

View clinical trials related to Ependymoma.

Filter by:
  • Active, not recruiting  
  • Page 1 ·  Next »

NCT ID: NCT05934630 Active, not recruiting - Clinical trials for Glioblastoma Multiforme

Testing Cerebrospinal Fluid for Cell-free Tumor DNA in Children, Adolescents, and Young Adults With Brain Tumors

Start date: July 12, 2023
Phase:
Study type: Observational

Recent advances in technology have allowed for the detection of cell-free DNA (cfDNA). cfDNA is tumor DNA that can be found in the fluid that surrounds the brain and spinal cord (called cerebrospinal fluid or CSF) and in the blood of patients with brain tumors. The detection of cfDNA in blood and CSF is known as a "liquid biopsy" and is non-invasive, meaning it does not require a surgery or biopsy of tumor tissue. Multiple studies in other cancer types have shown that cfDNA can be used for diagnosis, to monitor disease response to treatment, and to understand the genetic changes that occur in brain tumors over time. Study doctors hope that by studying these tests in pediatric brain tumor patients, they will be able to use liquid biopsy in place of tests that have more risks for patients, like surgery. There is no treatment provided on this study. Patients who have CSF samples taken as part of regular care will be asked to provide extra samples for this study. The study doctor will collect a minimum of one extra tube of CSF (about 1 teaspoon or 5 mL) for this study. If the patients doctor thinks it is safe, up to 2 tubes of CSF (about 4 teaspoons or up to 20 mL) may be collected. CSF will be collected through the indwelling catheter device or through a needle inserted into the lower part of the patient's spine (known as a spinal tap or lumbar puncture). A required blood sample (about ½ a teaspoon or 2 3 mL) will be collected once at the start of the study. This sample will be used to help determine changes found in the CSF. Blood will be collected from the patient's central line or arm as a part of regular care. An optional tumor tissue if obtained within 8 weeks of CSF collection will be collected if available. Similarities between changes in the DNA of the tissue that has caused the tumor to form and grow with the cfDNA from CSF will be compared. This will help understand if CSF can be used instead of tumor tissue for diagnosis. Up to 300 people will take part in this study. This study will use genetic tests that may identify changes in the genes in the CSF. The report of the somatic mutations (the mutations that are found in the tumor only) will become part of the medical record. The results of the cfDNA sequencing will be shared with the patient. The study doctor will discuss what the results mean for the patient and patient's diagnosis and treatment. There will not be any germline sequencing results reported and these will not be disclosed to the patient, patient's clinician or be recorded in patient medical record. Patient may be monitored on this study for up to 5 years.

NCT ID: NCT04743661 Active, not recruiting - Clinical trials for Recurrent Medulloblastoma

131I-Omburtamab, in Recurrent Medulloblastoma and Ependymoma

Start date: April 4, 2022
Phase: Phase 2
Study type: Interventional

A Phase 2 study investigating the addition of cRIT 131I-omburtamab to irinotecan, temozolomide, and bevacizumab for patients with recurrent medulloblastoma. A feasibility cohort is included to assess the feasibility of incorporating cRIT 131I-omburtamab for patients with recurrent ependymoma. Direct intraventricular delivery of radiolabeled tumor-specific antibodies may aid in both the detection and treatment of recurrent disease for these highly specific pediatric patients with recurrent tumors.

NCT ID: NCT04320888 Active, not recruiting - Clinical trials for Refractory Malignant Solid Neoplasm

Selpercatinib for the Treatment of Advanced Solid Tumors, Lymphomas, or Histiocytic Disorders With Activating RET Gene Alterations, a Pediatric MATCH Treatment Trial

Start date: May 3, 2021
Phase: Phase 2
Study type: Interventional

This phase II pediatric MATCH treatment trial studies how well selpercatinib works in treating patients with solid tumors that may have spread from where they first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), lymphomas, or histiocytic disorders that have activating RET gene alterations. Selpercatinib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway (called the RET pathway) and may reduce tumor size.

NCT ID: NCT04284774 Active, not recruiting - Clinical trials for Malignant Solid Neoplasm

Tipifarnib for the Treatment of Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With HRAS Gene Alterations, a Pediatric MATCH Treatment Trial

Start date: October 13, 2020
Phase: Phase 2
Study type: Interventional

This phase II pediatric MATCH trial studies how well tipifarnib works in treating patients with solid tumors that have recurred or spread to other places in the body (advanced), lymphoma, or histiocytic disorders, that have a genetic alteration in the gene HRAS. Tipifarnib may block the growth of cancer cells that have specific genetic changes in a gene called HRAS and may reduce tumor size.

NCT ID: NCT04195555 Active, not recruiting - Clinical trials for Refractory Malignant Solid Neoplasm

Ivosidenib in Treating Patients With Advanced Solid Tumors, Lymphoma, or Histiocytic Disorders With IDH1 Mutations (A Pediatric MATCH Treatment Trial)

Start date: July 20, 2020
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well ivosidenib works in treating patients with solid tumors that have spread to other places in the body (advanced), lymphoma, or histiocytic disorders that have IDH1 genetic alterations (mutations). Ivosidenib may block the growth of cancer cells that have specific genetic changes in an important signaling pathway called the IDH pathway.

NCT ID: NCT03698994 Active, not recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Ulixertinib in Treating Patients With Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With MAPK Pathway Mutations (A Pediatric MATCH Treatment Trial)

Start date: November 14, 2018
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.

NCT ID: NCT03638167 Active, not recruiting - Glioma Clinical Trials

EGFR806-specific CAR T Cell Locoregional Immunotherapy for EGFR-positive Recurrent or Refractory Pediatric CNS Tumors

Start date: March 19, 2019
Phase: Phase 1
Study type: Interventional

This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4+ and CD8+ T cells that are lentivirally transduced to express an EGFR806 specific chimeric antigen receptor (CAR) and EGFRt. CAR T cells are delivered via an indwelling catheter into the tumor cavity or the ventricular system in children and young adults with recurrent or refractory EGFR-positive CNS tumors. The primary objectives of this protocol are to evaluate the feasibility, safety, and tolerability of CNS-delivered fractionated CAR T cell infusions employing intra-patient dose escalation. Subjects with supratentorial tumors will receive sequential EGFR806-specific CAR T cells delivered into the tumor resection cavity, subjects with infratentorial tumors will receive sequential CAR T cells delivered into the fourth ventricle, and subjects with leptomeningeal disease will receive sequential CAR T cells delivered into the lateral ventricle. The secondary objectives are to assess CAR T cell distribution within the cerebrospinal fluid (CSF), the extent to which CAR T cells egress into the peripheral circulation, and EGFR expression at recurrence of initially EGFR-positive tumors. Additionally, tumor response will be evaluated by magnetic resonance imaging (MRI) and CSF cytology. The exploratory objectives are to analyze CSF specimens for biomarkers of anti-tumor CAR T cell presence and functional activity.

NCT ID: NCT03526250 Active, not recruiting - Clinical trials for Advanced Malignant Solid Neoplasm

Palbociclib in Treating Patients With Relapsed or Refractory Rb Positive Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders With Activating Alterations in Cell Cycle Genes (A Pediatric MATCH Treatment Trial)

Start date: August 13, 2018
Phase: Phase 2
Study type: Interventional

This phase II Pediatric MATCH trial studies how well palbociclib works in treating patients with Rb positive solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with activating alterations (mutations) in cell cycle genes that have spread to other places in the body and have come back or do not respond to treatment. Palbociclib may stop the growth of cancer cells by blocking some of the proteins needed for cell growth.

NCT ID: NCT03500991 Active, not recruiting - Glioma Clinical Trials

HER2-specific CAR T Cell Locoregional Immunotherapy for HER2-positive Recurrent/Refractory Pediatric CNS Tumors

Start date: July 26, 2018
Phase: Phase 1
Study type: Interventional

This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with autologous CD4 and CD8 T cells lentivirally transduced to express a HER2-specific chimeric antigen receptor (CAR) and EGFRt, delivered by an indwelling catheter in the tumor resection cavity or ventricular system in children and young adults with recurrent or refractory HER2-positive CNS tumors. A child or young adult with a refractory or recurrent CNS tumor will have their tumor tested for HER2 expression by immunohistochemistry (IHC) at their home institution or at Seattle Children's Hospital. If the tumor is HER2 positive and the patient meets all other eligibility criteria, including having a CNS catheter placed into the tumor resection cavity or into their ventricular system, and meets none of the exclusion criteria, then they can be apheresed, meaning T cells will be collected. The T cells will then be bioengineered into a second-generation CAR T cell that targets HER2-expressing tumor cells. The patient's newly engineered T cells will then be administered via the indwelling CNS catheter for two courses. In the first course they will receive a weekly dose of CAR T cells for three weeks, followed by a week off, an examination period, and then another course of weekly doses for three weeks. Following the two courses, patient's will undergo a series of studies including MRI to evaluate the effect of the CAR T cells and may have the opportunity to continue receiving additional courses of CAR T cells if the patient has not had adverse effects and if more of their T cells are available. The hypothesis is that an adequate amount of HER2-specific CAR T cells can be manufactured to complete two courses of treatment with three doses given on a weekly schedule followed by one week off in each course. The other hypothesis is that HER-specific CAR T cells safely can be administered through an indwelling CNS catheter to allow the T cells to directly interact with the tumor cells for each patient enrolled on the study safely can be delivered directly into the brain via indwelling catheter. Secondary aims of the study will include to evaluate CAR T cell distribution with the cerebrospinal fluid (CSF), the extent to which CAR T cells egress or traffic into the peripheral circulation or blood stream, and, if tissues samples from multiple time points are available, also evaluate the degree of HER2 expression at diagnosis versus at recurrence.

NCT ID: NCT03434262 Active, not recruiting - Neoplasms Clinical Trials

SJDAWN: St. Jude Children's Research Hospital Phase 1 Study Evaluating Molecularly-Driven Doublet Therapies for Children and Young Adults With Recurrent Brain Tumors

Start date: March 5, 2018
Phase: Phase 1
Study type: Interventional

Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: - To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. - To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: - To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.