Clinical Trials Logo

Ependymoma clinical trials

View clinical trials related to Ependymoma.

Filter by:
  • Recruiting  
  • Page 1 ·  Next »

NCT ID: NCT06161519 Recruiting - Glioma Clinical Trials

PLX038 in Primary Central Nervous System Tumors Containing MYC or MYCN Amplifications

Start date: January 31, 2024
Phase: Phase 1/Phase 2
Study type: Interventional

Background: About 90,000 new cases of brain and spinal cord tumors are diagnosed annually in the United States. Most of these tumors are benign; however, about 30% are malignant, and 35% of people with malignant tumors in the brain and spinal cord will die within 5 years. Many of these people have changes in certain genes (MYC or MYCN) that drive the development of their cancers. Objective: To test a study drug (PLX038) in people with tumors of the brain or spinal cord. Eligibility: People aged 18 years or older with a tumor of the brain or spinal cord. Some participants must also have tumors with changes in the MYC or MYCN genes. Design: Participants will be screened. They will have a physical exam and blood tests. They will have imaging scans and a test of their heart function. They may need to have a biopsy: A sample of tissue will be removed from their tumor. PLX038 is given through a tube attached to a needle inserted into a vein in the arm. All participants will receive PCX038 on the first day of each 21-day treatment cycle. They will take a second drug 3 days later to help reduce the risk of infection; for this drug, participants will be shown how to inject themselves under the skin at home. Blood tests, imaging scans, and other tests will be repeated during study visits. Hair samples will also be collected during these visits. Some participants may have an additional biopsy. Study treatment will continue up to 7 months. Follow-up visits will continue every few months for up to 5 years.

NCT ID: NCT06038760 Recruiting - Glioblastoma Clinical Trials

Prospective Evaluation of AI R&D Tool in Adult Glioma and Other Primary Brain Tumours (PEAR-GLIO)

PEAR-GLIO
Start date: October 12, 2023
Phase:
Study type: Observational

Pear Bio has developed a 3D microtumor assay and computer vision pipeline through which the response of an individual patient's tumor to different anti-cancer regimens can be tested simultaneously ex vivo. This study will recruit patients with primary brain tumors who are due to undergo surgery. Oncologists will be blinded to treatment response on the Pear Bio tool (the assay will be run in parallel with the patient's treatment). The primary objective of this study is to establish the ex vivo model and confirm whether approved therapies exhibit their intended mechanism of action in the model. Secondary objectives include correlating test results to patient outcomes, where available.

NCT ID: NCT05857969 Recruiting - Clinical trials for Recurrent Childhood Acute Lymphoblastic Leukemia

Ex Vivo Drug Sensitivity Testing and Multi-Omics Profiling

Start date: February 22, 2023
Phase:
Study type: Observational

Functional precision medicine (FPM) is a relatively new approach to cancer therapy based on direct exposure of patient- isolated tumor cells to clinically approved drugs and integrates ex vivo drug sensitivity testing (DST) and genomic profiling to determine the optimal individualized therapy for cancer patients. In this study, we will enroll relapsed or refractory pediatric cancer patients with tissue available for DST and genomic profiling from the South Florida area, which is 69% Hispanic and 18% Black. Tumor cells collected from tissue taken during routine biopsy or surgery will be tested.

NCT ID: NCT05835687 Recruiting - Glioblastoma Clinical Trials

Loc3CAR: Locoregional Delivery of B7-H3-CAR T Cells for Pediatric Patients With Primary CNS Tumors

Start date: April 27, 2023
Phase: Phase 1
Study type: Interventional

Loc3CAR is a Phase I clinical trial evaluating the use of autologous B7-H3-CAR T cells for participants ≤ 21 years old with primary CNS neoplasms. B7-H3-CAR T cells will be locoregionally administered via a CNS reservoir catheter. Study participants will be divided into two cohorts: cohort A with B7-H3-positive relapsed/refractory non-brainstem primary CNS tumors, and cohort B with brainstem high-grade neoplasms. Participants will receive six (6) B7-H3-CAR T cell infusions over an 8 week period. The purpose of this study is to find the maximum (highest) dose of B7-H3-CAR T cells that are safe to give patients with primary brain tumors.

NCT ID: NCT05672043 Recruiting - Glioma Clinical Trials

Genetic and Molecular Risk Profiles of Pediatric Malignant Brain Tumors in China

GRIPP
Start date: January 1, 2023
Phase:
Study type: Observational [Patient Registry]

Primary malignant central nervous system (CNS) tumors are the second most common childhood malignancies. Amongst, medulloblastomas are the most common malignant brain tumor of childhood and occur primarily in the cerebellum. According to molecular characteristics, medulloblastomas were classified into four subtypes: WNT, SHH, Group3 and Group4 and different prognosis were noticed between subgroups. Several genetic predispositions related to clinical outcome were also discovered and might influence the treatment of medulloblastomas as novel pharmaceutical targets. This study aims to investigate genetic and cellular profiles of pediatric brain malignancies, mostly medulloblastomas, and other central nervous system tumor based on WGS, RNA-seq, single-cell sequencing and spatial transcriptomics. We also aim to investigate the correlation between genetic characteristics and clinical prognosis.

NCT ID: NCT05278208 Recruiting - Medulloblastoma Clinical Trials

Lutathera for Treatment of Recurrent or Progressive High-Grade CNS Tumors

Start date: November 21, 2022
Phase: Phase 1/Phase 2
Study type: Interventional

This study will evaluate the safety and efficacy of Lutathera (177Lu-DOTATATE) in patients with progressive or recurrent High-Grade Central Nervous System (CNS) tumors and meningiomas that demonstrate uptake on DOTATATE PET. The drug will be given intravenously once every 8 weeks for a total of up to 4 doses over 8 months in patients aged 4-12 years (Phase I) or older than 12 yrs (Phase II) to test its safety and efficacy, respectively. Funding Source - FDA OOPD (grant number FD-R-0532-01)

NCT ID: NCT05259605 Recruiting - Glioma Clinical Trials

Observational Study for Assessing Treatment and Outcome of Patients With Primary Brain Tumours Using cIMPACT-NOW and 2021 WHO Classification

Start date: March 28, 2023
Phase:
Study type: Observational [Patient Registry]

Every new classification depends on its prognostic power and on the type of treatment given. With the rapid evolution of diagnostic methods and the advance in new treatments, there is much less reliable information available on how patients with newly defined brain tumour entities should be treated and what to expect from the current treatments. The goal is to determine whether the new 2021 WHO classification, based on cIMPACT-NOW recommendations, results in more homogeneous patient groups than the old 2016 classification. Furthermore, it will help derive provisional guidelines on how patients with these newly defined tumour entities are best treated. These recommendations will be based on the experience of EORTC investigators with chosen treatments and their experience as reported in this data collection report.

NCT ID: NCT05151718 Recruiting - Clinical trials for Pediatric Solid Tumor

Multiomic Approach to Radioresistance of Ependymomas in Children and Adolescents

EPENDYMOMICS
Start date: September 30, 2021
Phase:
Study type: Observational

Treatment of childhood ependymoma, the second most frequent pediatric brain tumor, is based on surgery and radiation therapy. However, 50% relapse, mainly locally. Progress in imaging, molecular biology and radiotherapy ballistics has led us to propose the EPENDYMOMICS project, a multi-omics approach using artificial intelligence to detect the predictive characteristics of relapse, and to define innovative radiotherapy targets using multimodal imaging. We previously reported that the relapse sites are mainly located in the high-dose radiotherapy zone and that there appear to be prognostic factors for relapse based on anatomical and functional MRI abnormalities by diffusion and perfusion. In addition, recent studies in molecular biology have identified significant prognostic factors. The challenge now is to use and correlate all these findings in larger cohorts to tackle the radio-resistance of this disease. Our objective is to collate in a single database called NETSPARE (Network to Structure and Share Pediatric data to Accelerate Research on Ependymoma) the clinical, histological, biological, imaging and radiotherapy data from two consecutive studies that included 370 children and adolescents with ependymoma since 2000 in France. The EPENDYMOMICS project will comprise a clinical research team, three imaging research teams, two histopathology teams, and a biostatistics team working on NETSPARE. Our goal is to obtain a radiogenomic signature of our data, which will be validated with the English external cohort of 200 patients that is currently being analyzed. The perspective is to optimize the indications and volumes of irradiation that could in the future be used in a European translational research trial to tackle radioresistance.

NCT ID: NCT05106296 Recruiting - Glioblastoma Clinical Trials

Chemo-immunotherapy Using Ibrutinib Plus Indoximod for Patients With Pediatric Brain Cancer

Start date: February 8, 2022
Phase: Phase 1
Study type: Interventional

Recent lab-based discoveries suggest that IDO (indoleamine 2,3-dioxygenase) and BTK (Bruton's tyrosine Kinase) form a closely linked metabolic checkpoint in tumor-associated antigen-presenting cells. The central clinical hypothesis for the GCC2020 study is that combining ibrutinib (BTK-inhibitor) with indoximod (IDO-inhibitor) during chemotherapy will synergistically enhance anti-tumor immune responses, leading to improvement in clinical response with manageable overlapping toxicity. GCC2020 is a prospective open-label phase 1 trial to determine the best safe dose of ibrutinib to use in combination with a previously studied chemo-immunotherapy regimen, comprised of the IDO-inhibitor indoximod plus oral metronomic cyclophosphamide and etoposide (4-drug combination) for participants, age 12 to 25 years, with relapsed or refractory primary brain cancer. Those previously treated with indoximod plus temozolomide may be eligible, including prior treatment via the phase 2 indoximod study (GCC1949, NCT04049669), the now closed phase 1 study (NLG2105, NCT02502708), or any expanded access (compassionate use) protocols. A dose-escalation cohort will determine the best safe dose of ibrutinib for the 4-drug combination. This will be followed by an expansion cohort, using ibrutinib at the best safe dose in the 4-drug combination, to allow assessment of preliminary evidence of efficacy.

NCT ID: NCT04978727 Recruiting - Clinical trials for Glioblastoma Multiforme

A Pilot Study of SurVaxM in Children Progressive or Relapsed Medulloblastoma, High Grade Glioma, Ependymoma and Newly Diagnosed Diffuse Intrinsic Pontine Glioma

Start date: July 1, 2022
Phase: Phase 1
Study type: Interventional

Patients will receive a vaccine called SurVaxM on this study. While vaccines are usually thought of as ways to prevent diseases, vaccines can also be used to treat cancer. SurVaxM is designed to tell the body's immune system to look for tumor cells that express a protein called survivin and destroy them. The survivin protein can be found on up to 95% of glioblastomas and other types of cancer but is not found in normal cells. If the body's immune system knows to destroy cells that express survivin, it may help to control tumor growth and recurrence. SurVaxM will be mixed with Montanide ISA 51 before it is given. Montanide ISA 51 is an ingredient that helps create a stronger immune response in people, which helps the vaccine work better. This study has two phases: Priming and Maintenance. During the Priming Phase, patients will get one dose of SurVaxM combined with Montanide ISA 51 through a subcutaneous injection (a shot under the skin) at the start of the study and every 2 weeks for 6 weeks (for a total of 4 doses). At the same time that patients get the SurVaxM/Montanide ISA 51 injection, they will also get a second subcutaneous injection of a medicine called sargramostim. Sargramostim is given close to the SurVaxM//Montanide ISA 51 injection and works to stimulate the immune system to help the SurVaxM/Montanide ISA 51 work more effectively. If a patient completes the Priming Phase without severe side effects and his or her disease stays the same or improves, he or she can continue to the Maintenance Phase. During the Maintenance Phase, the patient will get a SurVaxM/Montanide ISA 51 dose along with a sargramostim dose about every 8 weeks for up to two years. After a patient finishes the study treatment, the doctor and study team will continue to follow his/her condition and watch for side effects up to 3 years following the last dose of SurVaxM/Montanide ISA 51. Patients will be seen in clinic every 3 months during the follow-up period.