Clinical Trials Logo

Ependymoma clinical trials

View clinical trials related to Ependymoma.

Filter by:

NCT ID: NCT06323408 Not yet recruiting - Medulloblastoma Clinical Trials

Integrated Analysis of Therapy Response and Resistence in Embryonal Tumors and Gliomas

BZKF-AYA
Start date: March 2024
Phase:
Study type: Observational

The treatment of adolescents and young adults (AYA, 15 to 39 years) with malignant intra-axial CNS parenchymal tumors such as IDH-mutated gliomas, medulloblastomas and ependymomas is still not curative in all cases. The tumor biology and clinical needs to diagnose and treat these tumors are comparable across all age groups, so an integrated treatment environment overseen by adult and pediatric neuro-oncology specialists seems promising to leverage synergisms and advance diagnostic and therapeutic development in these tumors. A comprehensive, prospective and integrated biomaterial and imaging-based pipeline for the multi-faceted evaluation of AYAs has not yet been established for AYA patients with brain tumors in Germany. Current diagnostic platforms neglect the integrative processing of data from MRI and FET-PET imaging, radiotherapy plans, tumor tissue, liquid biopsies and clinical data as well as prognostic markers. A prospective AYA pipeline can therefore enable a better understanding of the aforementioned high-risk CNS malignancies and promises clinical advances for AYA patients and the clinical and scientific research landscape.

NCT ID: NCT06161519 Recruiting - Glioma Clinical Trials

PLX038 in Primary Central Nervous System Tumors Containing MYC or MYCN Amplifications

Start date: January 31, 2024
Phase: Phase 1/Phase 2
Study type: Interventional

Background: About 90,000 new cases of brain and spinal cord tumors are diagnosed annually in the United States. Most of these tumors are benign; however, about 30% are malignant, and 35% of people with malignant tumors in the brain and spinal cord will die within 5 years. Many of these people have changes in certain genes (MYC or MYCN) that drive the development of their cancers. Objective: To test a study drug (PLX038) in people with tumors of the brain or spinal cord. Eligibility: People aged 18 years or older with a tumor of the brain or spinal cord. Some participants must also have tumors with changes in the MYC or MYCN genes. Design: Participants will be screened. They will have a physical exam and blood tests. They will have imaging scans and a test of their heart function. They may need to have a biopsy: A sample of tissue will be removed from their tumor. PLX038 is given through a tube attached to a needle inserted into a vein in the arm. All participants will receive PCX038 on the first day of each 21-day treatment cycle. They will take a second drug 3 days later to help reduce the risk of infection; for this drug, participants will be shown how to inject themselves under the skin at home. Blood tests, imaging scans, and other tests will be repeated during study visits. Hair samples will also be collected during these visits. Some participants may have an additional biopsy. Study treatment will continue up to 7 months. Follow-up visits will continue every few months for up to 5 years.

NCT ID: NCT06038760 Recruiting - Glioblastoma Clinical Trials

Prospective Evaluation of AI R&D Tool in Adult Glioma and Other Primary Brain Tumours (PEAR-GLIO)

PEAR-GLIO
Start date: October 12, 2023
Phase:
Study type: Observational

Pear Bio has developed a 3D microtumor assay and computer vision pipeline through which the response of an individual patient's tumor to different anti-cancer regimens can be tested simultaneously ex vivo. This study will recruit patients with primary brain tumors who are due to undergo surgery. Oncologists will be blinded to treatment response on the Pear Bio tool (the assay will be run in parallel with the patient's treatment). The primary objective of this study is to establish the ex vivo model and confirm whether approved therapies exhibit their intended mechanism of action in the model. Secondary objectives include correlating test results to patient outcomes, where available.

NCT ID: NCT05934630 Active, not recruiting - Clinical trials for Glioblastoma Multiforme

Testing Cerebrospinal Fluid for Cell-free Tumor DNA in Children, Adolescents, and Young Adults With Brain Tumors

Start date: July 12, 2023
Phase:
Study type: Observational

Recent advances in technology have allowed for the detection of cell-free DNA (cfDNA). cfDNA is tumor DNA that can be found in the fluid that surrounds the brain and spinal cord (called cerebrospinal fluid or CSF) and in the blood of patients with brain tumors. The detection of cfDNA in blood and CSF is known as a "liquid biopsy" and is non-invasive, meaning it does not require a surgery or biopsy of tumor tissue. Multiple studies in other cancer types have shown that cfDNA can be used for diagnosis, to monitor disease response to treatment, and to understand the genetic changes that occur in brain tumors over time. Study doctors hope that by studying these tests in pediatric brain tumor patients, they will be able to use liquid biopsy in place of tests that have more risks for patients, like surgery. There is no treatment provided on this study. Patients who have CSF samples taken as part of regular care will be asked to provide extra samples for this study. The study doctor will collect a minimum of one extra tube of CSF (about 1 teaspoon or 5 mL) for this study. If the patients doctor thinks it is safe, up to 2 tubes of CSF (about 4 teaspoons or up to 20 mL) may be collected. CSF will be collected through the indwelling catheter device or through a needle inserted into the lower part of the patient's spine (known as a spinal tap or lumbar puncture). A required blood sample (about ½ a teaspoon or 2 3 mL) will be collected once at the start of the study. This sample will be used to help determine changes found in the CSF. Blood will be collected from the patient's central line or arm as a part of regular care. An optional tumor tissue if obtained within 8 weeks of CSF collection will be collected if available. Similarities between changes in the DNA of the tissue that has caused the tumor to form and grow with the cfDNA from CSF will be compared. This will help understand if CSF can be used instead of tumor tissue for diagnosis. Up to 300 people will take part in this study. This study will use genetic tests that may identify changes in the genes in the CSF. The report of the somatic mutations (the mutations that are found in the tumor only) will become part of the medical record. The results of the cfDNA sequencing will be shared with the patient. The study doctor will discuss what the results mean for the patient and patient's diagnosis and treatment. There will not be any germline sequencing results reported and these will not be disclosed to the patient, patient's clinician or be recorded in patient medical record. Patient may be monitored on this study for up to 5 years.

NCT ID: NCT05857969 Recruiting - Clinical trials for Recurrent Childhood Acute Lymphoblastic Leukemia

Ex Vivo Drug Sensitivity Testing and Multi-Omics Profiling

Start date: February 22, 2023
Phase:
Study type: Observational

Functional precision medicine (FPM) is a relatively new approach to cancer therapy based on direct exposure of patient- isolated tumor cells to clinically approved drugs and integrates ex vivo drug sensitivity testing (DST) and genomic profiling to determine the optimal individualized therapy for cancer patients. In this study, we will enroll relapsed or refractory pediatric cancer patients with tissue available for DST and genomic profiling from the South Florida area, which is 69% Hispanic and 18% Black. Tumor cells collected from tissue taken during routine biopsy or surgery will be tested.

NCT ID: NCT05835687 Recruiting - Glioblastoma Clinical Trials

Loc3CAR: Locoregional Delivery of B7-H3-CAR T Cells for Pediatric Patients With Primary CNS Tumors

Start date: April 27, 2023
Phase: Phase 1
Study type: Interventional

Loc3CAR is a Phase I clinical trial evaluating the use of autologous B7-H3-CAR T cells for participants ≤ 21 years old with primary CNS neoplasms. B7-H3-CAR T cells will be locoregionally administered via a CNS reservoir catheter. Study participants will be divided into two cohorts: cohort A with B7-H3-positive relapsed/refractory non-brainstem primary CNS tumors, and cohort B with brainstem high-grade neoplasms. Participants will receive six (6) B7-H3-CAR T cell infusions over an 8 week period. The purpose of this study is to find the maximum (highest) dose of B7-H3-CAR T cells that are safe to give patients with primary brain tumors.

NCT ID: NCT05672043 Recruiting - Glioma Clinical Trials

Genetic and Molecular Risk Profiles of Pediatric Malignant Brain Tumors in China

GRIPP
Start date: January 1, 2023
Phase:
Study type: Observational [Patient Registry]

Primary malignant central nervous system (CNS) tumors are the second most common childhood malignancies. Amongst, medulloblastomas are the most common malignant brain tumor of childhood and occur primarily in the cerebellum. According to molecular characteristics, medulloblastomas were classified into four subtypes: WNT, SHH, Group3 and Group4 and different prognosis were noticed between subgroups. Several genetic predispositions related to clinical outcome were also discovered and might influence the treatment of medulloblastomas as novel pharmaceutical targets. This study aims to investigate genetic and cellular profiles of pediatric brain malignancies, mostly medulloblastomas, and other central nervous system tumor based on WGS, RNA-seq, single-cell sequencing and spatial transcriptomics. We also aim to investigate the correlation between genetic characteristics and clinical prognosis.

NCT ID: NCT05278208 Recruiting - Medulloblastoma Clinical Trials

Lutathera for Treatment of Recurrent or Progressive High-Grade CNS Tumors

Start date: November 21, 2022
Phase: Phase 1/Phase 2
Study type: Interventional

This study will evaluate the safety and efficacy of Lutathera (177Lu-DOTATATE) in patients with progressive or recurrent High-Grade Central Nervous System (CNS) tumors and meningiomas that demonstrate uptake on DOTATATE PET. The drug will be given intravenously once every 8 weeks for a total of up to 4 doses over 8 months in patients aged 4-12 years (Phase I) or older than 12 yrs (Phase II) to test its safety and efficacy, respectively. Funding Source - FDA OOPD (grant number FD-R-0532-01)

NCT ID: NCT05259605 Recruiting - Glioma Clinical Trials

Observational Study for Assessing Treatment and Outcome of Patients With Primary Brain Tumours Using cIMPACT-NOW and 2021 WHO Classification

Start date: March 28, 2023
Phase:
Study type: Observational [Patient Registry]

Every new classification depends on its prognostic power and on the type of treatment given. With the rapid evolution of diagnostic methods and the advance in new treatments, there is much less reliable information available on how patients with newly defined brain tumour entities should be treated and what to expect from the current treatments. The goal is to determine whether the new 2021 WHO classification, based on cIMPACT-NOW recommendations, results in more homogeneous patient groups than the old 2016 classification. Furthermore, it will help derive provisional guidelines on how patients with these newly defined tumour entities are best treated. These recommendations will be based on the experience of EORTC investigators with chosen treatments and their experience as reported in this data collection report.

NCT ID: NCT05151718 Recruiting - Clinical trials for Pediatric Solid Tumor

Multiomic Approach to Radioresistance of Ependymomas in Children and Adolescents

EPENDYMOMICS
Start date: September 30, 2021
Phase:
Study type: Observational

Treatment of childhood ependymoma, the second most frequent pediatric brain tumor, is based on surgery and radiation therapy. However, 50% relapse, mainly locally. Progress in imaging, molecular biology and radiotherapy ballistics has led us to propose the EPENDYMOMICS project, a multi-omics approach using artificial intelligence to detect the predictive characteristics of relapse, and to define innovative radiotherapy targets using multimodal imaging. We previously reported that the relapse sites are mainly located in the high-dose radiotherapy zone and that there appear to be prognostic factors for relapse based on anatomical and functional MRI abnormalities by diffusion and perfusion. In addition, recent studies in molecular biology have identified significant prognostic factors. The challenge now is to use and correlate all these findings in larger cohorts to tackle the radio-resistance of this disease. Our objective is to collate in a single database called NETSPARE (Network to Structure and Share Pediatric data to Accelerate Research on Ependymoma) the clinical, histological, biological, imaging and radiotherapy data from two consecutive studies that included 370 children and adolescents with ependymoma since 2000 in France. The EPENDYMOMICS project will comprise a clinical research team, three imaging research teams, two histopathology teams, and a biostatistics team working on NETSPARE. Our goal is to obtain a radiogenomic signature of our data, which will be validated with the English external cohort of 200 patients that is currently being analyzed. The perspective is to optimize the indications and volumes of irradiation that could in the future be used in a European translational research trial to tackle radioresistance.