View clinical trials related to Deep Learning.
Filter by:MRI scans were performed using 3 different 1.5T scanners with an eight-channel head coils. Following a 3D pre-contrast T1w scan, a low-dose contrast-enhanced 3D T1w scan was obtained using 20% (0.02 mmol/kg) of the standard dosage of gadoterate meglumine. The subjects were immediately administered the remaining 80% (0.08 mmol/kg) of the contrast agent to reach the standard dose of 0.1 mmol/kg, which served as a training ground truth for further quantitative assessment. All three acquisitions were performed during a single imaging session, with no additional gadolinium dose administered above the standard protocol.
The Korotkoff Sounds(KS), which have been in use for over a century, are widely regarded as the gold standard for measuring blood pressure. Furthermore, their potential extends beyond diagnosis and treatment of cardiovascular disease; however, research on the KS remains limited. Given the increasing incidence of heart failure (HF), there is a pressing need for a rapid and convenient prehospital screening method. In this study, we propose employing deep learning (DL) techniques to explore the feasibility of utilizing KS methodology in predicting functional changes in cardiac ejection fraction (LVEF) as an indicator of cardiac dysfunction.
The primary efficacy endpoints are the standard deviation and coefficient of determination (R2) between predicted and actual values for the bilirubin regression model, and the grading accuracy for the jaundice severity classification model. The secondary efficacy endpoint is the mean percentage error between predicted and actual bilirubin values. There are no relevant safety risks. Statistical differences for categorical variables (e.g., jaundice grading evaluation indicators) will be analyzed using the chi-square test or Fisher's exact probability test. For continuous variables (e.g., bilirubin prediction evaluation indicators), t-tests (normal distribution) or non-parametric tests (non-normal distribution) will be used. The 95% confidence interval for jaundice grading accuracy will be calculated using the Wilson method. The study duration is estimated to be 3 months.
Congenital heart disease (CHD) is the most common congenital disease in children. The early detection, diagnosis and treatment of CHD in children is of great significance to improve the prognosis and reduce the mortality of children, but the current screening methods have limitations. Electrocardiogram (ECG), as an economical and rapid means of heart disease detection, has a very important value in the auxiliary diagnosis of CHD.Big data and deep learning technologies in artificial intelligence (AI) have shown great potential in the medical field. The advent of the big data era provides rich data resources for the in-depth study of CHD ECG signals in children. The development of deep learning technology, especially the breakthrough in the field of image recognition, provides a strong technical support for the intelligent analysis of electrocardiogram. The particularity of children electrocardiogram requires the development of a special algorithm model. At present, the research on the application of deep learning models to identify children's electrocardiograms is limited, and the training and verification from large data sets are lacking. Based on the Chinese Congenital Heart Disease Collaborative Research Network, this project aims to integrate data and deep learning technology to develop a set of intelligent electrocardiogram assisted diagnosis system (CHD-ECG AI system) suitable for children with CHD, so as to improve the early detection rate of CHD and improve the efficiency of congenital heart disease screening.
Ultrasound (US) is a more cost-effective, accessible, and available imaging technique to assess anterior talofibular ligament (ATFL) injuries compared with magnetic resonance imaging (MRI). However, challenges in using this technique and increasing demand on qualified musculoskeletal (MSK) radiologists delay the diagnosis. The investigators have already developed a deep convolutional network (DCNN) model that automates detailed classification of ATFL injuries. The investigators hope to use the DCNN in real-world clinical setting to test its diagnostic accuracy.
Ultrasound (US) is a more cost-effective, accessible, and available imaging technique to assess anterior talofibular ligament (ATFL) injuries compared with magnetic resonance imaging (MRI). However, challenges in using this technique and increasing demand on qualified musculoskeletal (MSK) radiologists delay the diagnosis. Using datasets from multiple clinical centers, the investigators aimed to develop and validate a deep convolutional network (DCNN) model that automates classification of ATFL injuries using US images with the goal of providing interpretable assistance to radiologists and facilitating a more accurate diagnosis of ATFL injuries. The investigators collected US images of ATFL injuries which had arthroscopic surgery results as reference standard form 13 hospitals across China;Then the investigators divided the images into training dataset, internal validation dataset, and external validation dataset in a ratio of 8:1:1; the investigators chose an optimal DCNN model to test its diagnostic performance of the model, including the diagnostic accuracy, sensitivity, specificity, F1 score. At last, the investigators compared the diagnostic performance of the model with 12 radiologists at different levels of expertise.
The goal of this observational study is to evaluate the impact of deep learning image reconstruction on the image quality and diagnostic performance of double low-dose CTA. The main question it aims to answer is to explore the feasibility of deep learning image reconstruction in double low-dose CTA.
Early assessment of pancreatic exocrine insufficiency (PEI) is crucial for determining appropriate chronic pancreatitis (CP) treatment plans, thereby avoiding unnecessary suffering and further complications in patients. A total of 504 patients with CP who underwent fecal elastase-1 test and contrast-enhanced CT at Changhai Hospital between January 2018 and April 2023 were enrolled in this study. The investigators aim to establish a fully automated workflow to establish a PEI classification model based on radiomic features, semantic features and deep learning features on enhanced CT images for evaluating the severity of PEI.
Here, this study aimed to develop an automated system for detecting and diagnosing lesion DRGs in PHN patients based on deep learning. This study retrospectively analyzed the DRG images of all patients with postherpetic neuralgia who underwent magnetic resonance neuroimaging examinations in our radiology department from January 2021 to February 2022. After image post-processing, the You Only Look Once (YOLO) version 8 was selected as the target algorithm model. Model performance was evaluated using metrics such as precision, recall, Average Precision, mean average precision and F1 score.
Renal cell carcinoma (RCC) is the most common malignant tumor in the kidney with a high mortality rate. Traditional imaging techniques are limited in capturing the internal heterogeneity of the tumor. Radiomics provides internal features of lesions for precise diagnosis, prognosis prediction, and personalized treatment planning. Early and accurate diagnosis of renal tumors is crucial, but it's challenging due to morphological and pathological overlap between benign and malignant lesions. The accurate diagnosis of RCC, especially for small tumors, remains a significant challenge. Recent studies have shown a relationship between body composition, obesity, and renal tumors. Common indicators like body weight and BMI fail to reflect body composition accurately. Research on the role of body composition, including adipose tissue, in tumor pathology could improve clinical diagnosis and treatment planning.