Clinical Trials Logo

Clinical Trial Summary

Gut dysbiosis co-exists in patients with coronavirus pneumonia. Some of these patients would develop secondary bacterial infections and antibiotic-associated diarrhea (AAD). The recent study on using washed microbiota transplantation (WMT) as rescue therapy in critically ill patients with AAD demonstrated the important clinical benefits and safety of WMT. This clinical trial aims to evaluate the outcome of WMT combining with standard therapy for patients with 2019-novel coronavirus pneumonia, especially for those patients with dysbiosis-related conditions.


Clinical Trial Description

An ongoing outbreak of 2019 novel coronavirus was reported in Wuhan, China. 2019-nCoV has caused a cluster of pneumonia cases, and posed continuing epidemic threat to China and even global health. Unfortunately, there is currently no specific effective treatment for the viral infection and the related serious complications. It is in urgent need to find a new specific effective treatment for the 2019-nCoV infection. According to Declaration of Helsinki and International Ethical Guidelines for Health-related Research Involving Humans, the desperately ill patients with 2019-nCov infection during disease outbreaks have a moral right to try unvalidated medical interventions (UMIs) and that it is therefore unethical to restrict access to UMIs to the clinical trial context.

There is a vital link between the intestinal tract and respiratory tract, which was exemplified by intestinal complications during respiratory disease and vice versa. Some of these patients can develop secondary bacterial infections and antibiotic-associated diarrhea (AAD). The recent study on using washed microbiota transplantation (WMT) as rescue therapy in critically ill patients with AAD demonstrated the important clinical benefits and safety of WMT. Additionally, the recent animal study provided direct evidence supporting that antibiotics could decrease gut microbiota and the lung stromal interferon signature and facilitate early influenza virus replication in lung epithelia. Importantly, the above antibiotics caused negative effects can be reversed by fecal microbiota transplantation (FMT) which suggested that FMT might be able to induce a significant improvement in the respiratory virus infection. Another evidence is that the microbiota could confer protection against certain virus infection such as influenza virus and respiratory syncytial virus by priming the immune response to viral evasion. The above results suggested that FMT might be a new therapeutic option for the treatment of virus-related pneumonia. The methodology of FMT recently was coined as WMT, which is dependent on the automatic facilities and washing process in a laboratory room. Patients underwent WMT with the decreased rate of adverse events and unchanged clinical efficacy in ulcerative colitis and Crohn's disease. This clinical trial aims to evaluate the outcome of WMT combining with standard therapy for patients with novel coronavirus pneumonia, especially for those patients with dysbiosis-related conditions. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04251767
Study type Interventional
Source The Second Hospital of Nanjing Medical University
Contact
Status Withdrawn
Phase N/A
Start date February 5, 2020
Completion date April 30, 2020