View clinical trials related to Chronic Stroke.
Filter by:Study will look at the effect of a game-based, task-oriented home exercise program on adherence in persons with chronic (> 6 months post) stroke as compared to a standard home exercise program. The study will also look at the effect of a game-based, task-oriented home exercise program on upper extremity motor function and occupational performance in persons with chronic (> 6 months post) stroke as compared to a standard home exercise program. Finally, the study will look at barriers and facilitators to successful use of the game-based, task-oriented home exercise program in the home setting.
Rehabilitation options for stroke survivors who present severe hemiparesis in chronic stages are limited and may end in compensation techniques that involve the use of the less affected arm to achieve some degree of functional independence. Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been used after stroke to promote excitability of the surviving neural architecture in order to support functional recovery. Interestingly, cortical excitability has been reported to increase when tDCS is combined with virtual reality. This synergetic effect could explain the promising results achieved by preliminary experimental interventions that combined both approaches on upper limb rehabilitation after stroke. The objective of this study is to explore the use of these interventions in subjects with severe hemiparesis and to determine its efficacy in comparison to conventional physical therapy
In chronic stroke patients, the data for motor function and gait pattern analysis was obtained.
Gait recovery is one of the main goals of post-stroke rehabilitation where robotic-assisted practice has shown positive outcomes. However, literature lacks of clinical studies on exoskeleton-supported gait rehabilitation. Recently, a wearable exoskeleton (Ekso™, EksoBionics, USA) has been commercialized for re-enabling patients to stand and walk, involving them directly in steps trigger through body weight balance. The main aim of this study is to assess the clinical and neuromuscular effects of exoskeleton-based gait rehabilitation in sub-acute and chronic stroke patients, compared to patients with similar characteristics who will conduct a traditional over-ground gait training. In this multicentric RCT, 162 stroke patients will be enrolled and randomly assigned to the Experimental Group (EG) or to the Control Group (CG). Patients will conduct at least 12 one-hour-sessions (about 3 times/ week) of Ekso™ (EG) or traditional over-ground (CG) gait rehabilitation. Clinical evaluations (lower limb Modified Ashworth Scale- MAS; Motricity Index - MI; Trunk Control Test - TCT; Functional Ambulation Classification - FAC; 10-meter walking test - 10mwt; 6-minute walking test - 6mwt; Walking Handicap Scale - WHS; Time Up and Go - TUG) will be administered to patients at the beginning (T1) and at the end (T2) of the training period. The primary outcome is the distance performed during the 6mwt. A follow up study at 1 month (T3) and at 3 months (T4) after T2 will be conducted.
In chronic stroke patients, brain network reorganization and recovery mechanism are investigated after stroke onset using functional MRI and diffusion tensor imaging analyses.
To study safety, feasibility and outcomes of combining osteopathic manipulative therapies with hyperbaric oxygen therapy in reducing the functional deficits in stroke survivors in subacute and chronic phases post ischemic stroke. To document the same as part of a pilot project in anticipation of further investigational studies.
This study evaluates the effectiveness of Guttmann NeuroPersonalTrainer (GNPT), a tele-rehabilitation platform developed as a tool for the cognitive rehabilitation of chronic stroke patients. All patients will receive this treatment but in different order: half will receive GNPT and the other half will receive sham cognitive training; after a washout period of three months, crossover will occur and participants from the GNPT condition will receive sham cognitive training, while participants originally from the control intervention will receive GNPT.
The purpose of this study is to compare the clinometric (psychometric) properties of the SCALE and FMA-LE assessments in adults after stroke. A second purpose is to determine how well each measure predicts walking speed using the 10 meter walk test.
The aim of this study is to investigate the effects of high-frequency short duration tablet-based speech and language therapy (teleSLT) mixed with cognitive training (teleCT) in chronic stroke patients. Recent studies suggest that chronic stroke patients benefit from SLT with high frequency and that cognitive abilities can play a role in sentence comprehension and production by individuals with aphasia. To investigate the effects of the distribution of training time for teleSLT and teleCT the investigators use two combinations. In the experimental group 80% of the training time will be devoted to teleSLT and 20% to teleCT whereas in the control group 20% of the training time will be devoted to teleSLT and 80% to teleCT. Both groups receive the same total amount and frequency of intervention but with different distributions. At three time points (pre-, post-test and 8 week follow-up) the patients' word finding ability is measured.
Robotic rehabilitation is promising to promote function in stroke patients. The assist as needed training paradigm has shown to stimulate neuroplasticity but often cannot be used because stroke patients are too impaired to actively control the robot against gravity. Aim of this study is to present a novel robotic approach based on fully assisted functional movements and to examine the effect of the intervention in terms of motor function improvement in subjects with chronic stroke in the short term and at 6-month follow up. A preliminary evaluation of the effectiveness of the intervention in improving activity and participation in the short term is also performed. Further, the study aims to verify whether some instrumental measures (using kinematics, EMG and EEG) may help gain insight into the mechanisms leading to improved motor ability following the robotic intervention and can be used to predict functional recovery.