Breast Cancer Clinical Trial
Official title:
A Simplified Approach to Predicting the Malignancy of Breast Lesions: Nomogram in Ultrasonography
This study aims to construct and validate a quantitative mammographic model based on breast ultrasound images, incorporating patient characteristics such as age and significant sonographic features. The model is intended for precise discrimination of breast lesions while assessing its diagnostic performance in clinical practice. Our goal is to provide a reliable adjunct tool to enhance the clinical decision-making of healthcare professionals and potentially improve early screening and accurate diagnosis of breast diseases.
Data Collection: This study retrospectively collected clinical and ultrasound examination data from patients who underwent breast lesion surgery at our hospital from January 2020 to June 2023. Inclusion criteria included patients with complete clinical information and available ultrasound image data. Parameters extracted from this data included age, 2D ultrasound images, Doppler ultrasound images, and ultrasound diagnostic reports. Feature extraction from ultrasound images included 2D lesion information (maximum diameter, orientation, echogenicity, morphology, margins, calcification type, ductal changes), Doppler information (blood flow pattern, resistance index), and BI-RADS classification based on suspicious ultrasound findings by physicians. Model Development: Firstly, we conducted multicollinearity analysis using Variance Inflation Factor (VIF) to select variables with VIF less than 5, aiming to reduce the impact of collinearity. We used post-operative pathological results of breast lesions as the gold standard for model development. In the R programming language, we utilized the caret package to randomly split the final samples into training and validation sets in a 7:3 ratio based on the outcome variable (benign or malignant breast lesions) while setting a random seed (set.seed) for result reproducibility. Subsequently, we performed univariate logistic regression analysis on binary variables in the training set, retaining variables with P < 0.05, followed by multivariate logistic regression analysis to identify independent predictors of breast lesion malignancy. Model Validation: To validate the model's performance, we constructed a nomogram based on the weight allocation of each independent predictor. Then, we comprehensively validated the model in the validation set, including calculating sensitivity, specificity, accuracy, and concordance. Receiver Operating Characteristic (ROC) curves were plotted, and the area under the curve (AUC) was calculated to determine the optimal threshold for quantitatively predicting the probability of breast cancer occurrence in patients. Additionally, we performed Decision Curve Analysis (DCA) to assess the net clinical benefit of the model at different patient decision thresholds. DCA helps determine the practical utility of the model in clinical decision-making and identifies the optimal threshold for predicting the probability of disease occurrence, aiding physicians in making better decisions. These validation metrics were used to evaluate the model's performance, accuracy, and potential application in real clinical practice. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04681911 -
Inetetamab Combined With Pyrotinib and Chemotherapy in the Treatment of HER2 Positive Metastatic Breast Cancer
|
Phase 2 | |
Terminated |
NCT04066790 -
Pyrotinib or Trastuzumab Plus Nab-paclitaxel as Neoadjuvant Therapy in HER2-positive Breast Cancer
|
Phase 2 | |
Completed |
NCT04890327 -
Web-based Family History Tool
|
N/A | |
Completed |
NCT03591848 -
Pilot Study of a Web-based Decision Aid for Young Women With Breast Cancer, During the Proposal for Preservation of Fertility
|
N/A | |
Recruiting |
NCT03954197 -
Evaluation of Priming Before in Vitro Maturation for Fertility Preservation in Breast Cancer Patients
|
N/A | |
Terminated |
NCT02202746 -
A Study to Assess the Safety and Efficacy of the VEGFR-FGFR-PDGFR Inhibitor, Lucitanib, Given to Patients With Metastatic Breast Cancer
|
Phase 2 | |
Active, not recruiting |
NCT01472094 -
The Hurria Older PatiEnts (HOPE) With Breast Cancer Study
|
||
Completed |
NCT06049446 -
Combining CEM and Magnetic Seed Localization of Non-Palpable Breast Tumors
|
||
Withdrawn |
NCT06057636 -
Hypnosis for Pain in Black Women With Advanced Breast Cancer: A Feasibility Study
|
N/A | |
Recruiting |
NCT05560334 -
A Single-Arm, Open, Exploratory Clinical Study of Pemigatinib in the Treatment of HER2-negative Advanced Breast Cancer Patients With FGFR Alterations
|
Phase 2 | |
Active, not recruiting |
NCT05501769 -
ARV-471 in Combination With Everolimus for the Treatment of Advanced or Metastatic ER+, HER2- Breast Cancer
|
Phase 1 | |
Recruiting |
NCT04631835 -
Phase I Study of the HS-10352 in Patients With Advanced Breast Cancer
|
Phase 1 | |
Completed |
NCT04307407 -
Exercise in Breast Cancer Survivors
|
N/A | |
Recruiting |
NCT03544762 -
Correlation of 16α-[18F]Fluoro-17β-estradiol PET Imaging With ESR1 Mutation
|
Phase 3 | |
Terminated |
NCT02482389 -
Study of Preoperative Boost Radiotherapy
|
N/A | |
Enrolling by invitation |
NCT00068003 -
Harvesting Cells for Experimental Cancer Treatments
|
||
Completed |
NCT00226967 -
Stress, Diurnal Cortisol, and Breast Cancer Survival
|
||
Recruiting |
NCT06006390 -
CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors
|
Phase 1/Phase 2 | |
Recruiting |
NCT06037954 -
A Study of Mental Health Care in People With Cancer
|
N/A | |
Recruiting |
NCT06019325 -
Rhomboid Intercostal Plane Block on Chronic Pain Incidence and Acute Pain Scores After Mastectomy
|
N/A |