Clinical Trials Logo

Clinical Trial Summary

The objective is to better identify suspicious breast lesions that need to be biopsied for malignancy in women currently recommended for biopsy. The long-term goal is to reduce unnecessary biopsies and increase biopsy yield. To do this, we have developed an innovative way to use FDA-approved breast imaging protocols to acquire multispectral images to measure the composition of suspicious breast lesions. Our central hypothesis is that breast tissue composition in combination with analysis of morphological and textural tissue characteristics on digital breast tomosynthesis (DBT) imaging will yield significantly higher breast cancer specificity than conventional interpretation of DBT alone.


Clinical Trial Description

Women with dense breast have not been shown to benefit by increased cancer detection of volumetric digital breast tomosynthesis (DBT) but may benefit by lower recall rates. DBT screening biopsy rates are similar to 2D digital mammography; higher for first screening exams, lower thereafter with adjustment for age and breast density. In the U.S., 71% of biopsies do not result in a breast cancer diagnosis among women ages 40-79 who undergo breast cancer screening. To address the high rate of unnecessary biopsies, an innovative way to use FDA-approved breast imaging protocols has been developed to acquire multispectral images to measure the lipid/water/protein (L/W/P) composition of suspicious breast lesions. Malignant breast tissue has unique L/W/P composition fractions when compared to normal or benign breast tissue. This proposal aims to increase biopsy yield (BI-RADS-PPV3) through combining L/W/P biological biomarkers with quantitative morphological and textural image analysis. This combination of composition and physical descriptions of suspicious breast lesions is called q3CB. The benefits of adding q3CB to the current DBT screening/diagnostic imaging paradigm, that may already include computer aided detection, is not known. This study is designed to compare the expected biopsy yield with and without q3CB in a clinical reader study and explore how q3CB may be combine with existing technologies. The central hypothesis is that biological L/W/P fractions in breast tissue in combination with analysis of morphological and textural tissue characteristics will yield significantly higher breast cancer specificity than conventional interpretation of DBT alone. The objective is to better identify suspicious breast lesions that need to be biopsied for malignancy in women currently recommended for biopsy. The long-term goal is to reduce unnecessary biopsies and increase biopsy yield. Our rationale for the proposed research is that biological L/W/P descriptions of breast lesions will lead to more specific biopsy decisions and a better understanding of cancer types. Specifically, the project aims are 1) develop q3CB lesion signatures for distinguishing breast cancer lesions from benign lesions, using 600 prospectively-acquired DBT exams of women recommended to undergo biopsy; 2) conduct a clinical reader study to compare radiologists' performance on standard-of-care FFDM or DBT without and with the inclusion of q3CB signatures; 3) Investigate the utility of q3CB lesion signatures in a screening paradigm to improve sensitivity and specificity on CADe-identified suspicious lesions in the tasks of assessing malignancy as well as in associating with their association with cancer subtypes; Exploratory) explore the added sensitivity and specificity of dual-energy DBT in phantom studies that explore lesion size, composition, and breast density. The innovation of this study is the full characterization of lipid/water/protein lesion composition with DBT and how it complements existing computer aided diagnostic programs paired with clinical radiologists providing evidence ready for clinical translation of this unique and emerging technology. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05369546
Study type Observational
Source University of Hawaii
Contact John A Shepherd, PhD
Phone 808-440-5234
Email [email protected]
Status Recruiting
Phase
Start date June 2022
Completion date July 2026

See also
  Status Clinical Trial Phase
Recruiting NCT04681911 - Inetetamab Combined With Pyrotinib and Chemotherapy in the Treatment of HER2 Positive Metastatic Breast Cancer Phase 2
Active, not recruiting NCT04890327 - Web-based Family History Tool N/A
Terminated NCT04066790 - Pyrotinib or Trastuzumab Plus Nab-paclitaxel as Neoadjuvant Therapy in HER2-positive Breast Cancer Phase 2
Completed NCT03591848 - Pilot Study of a Web-based Decision Aid for Young Women With Breast Cancer, During the Proposal for Preservation of Fertility N/A
Recruiting NCT03954197 - Evaluation of Priming Before in Vitro Maturation for Fertility Preservation in Breast Cancer Patients N/A
Terminated NCT02202746 - A Study to Assess the Safety and Efficacy of the VEGFR-FGFR-PDGFR Inhibitor, Lucitanib, Given to Patients With Metastatic Breast Cancer Phase 2
Active, not recruiting NCT01472094 - Clinical and Biological Predictors of Chemotherapy Toxicity in Older Adults
Recruiting NCT04631835 - Phase I Study of the HS-10352 in Patients With Advanced Breast Cancer Phase 1
Enrolling by invitation NCT04307407 - Exercise in Breast Cancer Survivors N/A
Recruiting NCT03544762 - Correlation of 16α-[18F]Fluoro-17β-estradiol PET Imaging With ESR1 Mutation Phase 3
Terminated NCT02482389 - Study of Preoperative Boost Radiotherapy N/A
Enrolling by invitation NCT00068003 - Harvesting Cells for Experimental Cancer Treatments
Completed NCT00226967 - Stress, Diurnal Cortisol, and Breast Cancer Survival
Active, not recruiting NCT00341939 - Retrospective Analysis of a Drug-Metabolizing Genotype in Cancer Patients and Correlation With Pharmacokinetic and Pharmacodynamics Data
Recruiting NCT04190381 - A Study to Evaluate the Safety and Clinical Outcome of Using FR-Mask in Breast Cancer Patients With Radiation-irritated Skin After Radiotherapy N/A
Active, not recruiting NCT04088955 - A Digimed Oncology PharmacoTherapy Registry
Recruiting NCT03667716 - COM701 (an Inhibitor of PVRIG) in Subjects With Advanced Solid Tumors. Phase 1
Recruiting NCT03412877 - Administration of Autologous T-Cells Genetically Engineered to Express T-Cell Receptors Reactive Against Neoantigens in People With Metastatic Cancer Phase 2
Active, not recruiting NCT02894398 - Study in Women With Advanced Breast Cancer Receiving Palbociclib With AI or Fulvestrant Phase 2
Completed NCT01857193 - Phase Ib Trial of LEE011 With Everolimus (RAD001) and Exemestane in the Treatment of Hormone Receptor Positive HER2 Negative Advanced Breast Cancer Phase 1