Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT04461990
Other study ID # BCIG
Secondary ID
Status Not yet recruiting
Phase
First received
Last updated
Start date December 1, 2020
Est. completion date December 30, 2023

Study information

Verified date August 2020
Source Fudan University
Contact Gu Ya Jia
Phone 86-18017317817
Email guyajia@126.com
Is FDA regulated No
Health authority
Study type Observational [Patient Registry]

Clinical Trial Summary

1. Identify the imaging features of breast cancer with different molecular types

2. Reveal the association between hormone receptor positive/HER2 negative breast cancer and imaging histology, Oncotype Dx recurrence score

3. Combine genomics and imaging to establish a predictive model for the sensitivity of HER2-positive breast cancer targeted therapy

4. Establish an imaging genomics prediction model for triple-negative breast cancer molecular subtypes, and clarify the imaging genomics characteristics of the therapeutic targets of each subtype


Description:

Research design

1. Research on the molecular typing of breast cancer based on imaging features

2. Establish a Luminal breast cancer recurrence risk prediction model

3. Establish HER2 targeted therapy sensitivity prediction model

4. Establish TNBC molecular subtype prediction model Research methods Research Object This study used a multi-center study to prospectively enroll breast cancer patients diagnosed with pathology. All enrolled patients had complete clinical data, including demographic characteristics (gender, age, menstrual status and fertility history), and pathological data (histopathological data). Staging, immunohistochemical status and FISH, genetic testing records the recurrence score and genotype), imaging data, complete treatment and follow-up (whether there is local recurrence and metastasis, and the time of diagnosis).

Magnetic resonance examination In order to maintain the comparability between the images and reduce the systematic errors, each center selects a fixed MR device for scanning. Among them, a. Oncology Hospital chose to scan images with 3.0T (Siemens Skyra) MR equipment. A special breast coil is used to add high-definition diffusion-weighted scanning and multi-b value diffusion-weighted scanning before the dynamic enhancement scan. Dynamically enhanced acquisition in 5 phases with a time resolution of 65s. b. Renji Hospital uses Netherlands Philips Achieva 3.0 T superconductor MR scanner, 4-channel dedicated breast phased array coil. Scanning sequences include T1WI, T2WI, T2WI fat suppression, DWI and DCE-MRI. The contrast agent was Gd-DTPA, with a dose of 0.1 mmol/kg, an injection rate of 2.0 mL/s, and an additional 20 mL of saline was added to the tube after injection. The T1WI scan was performed first, and 5 time phases were continuously scanned after the injection of contrast agent, and each time phase was separated by 61 s, for a total of 6 time phases. c. Chinese women and babies are scanned with 1.5T SIEMENS AERA MR equipment and special breast coils. Scanning sequence includes 5 phases of T1WI, T2WI fat suppression, DWI and dynamic enhancement scan, time resolution 71s.

Image processing Use software to make semi-automatic and automatic outlines of the tumor interest area, and make the outline of the tumor solid enhancement part, the entire tumor area and the surrounding edema zone in the transverse position. In order to accurately delineate the tumor, compare the T1 and T2 weighted and dynamically enhanced images, two imaging physicians are responsible, one is responsible for delineation and the other is reviewed, and the disputed area is determined after discussion by a third person. Create a dynamic enhanced tumor texture analysis program to automatically extract imaging omics features in the region of interest. Using a labeled data set, a computer-based automatic segmentation algorithm model based on machine learning is constructed to automatically extract regions of interest, and segmentation performance evaluation is performed on manually delineated labels.

Statistical analysis Perform statistical analysis on the obtained images and clinical data, extract image omics features and use machine learning algorithms to screen important features. Use statistical tools such as SPSS and R language. Paired t test (continuous variable) and chi-square test (discontinuous variable) were used to compare the clinical and imaging characteristics of patients with different prognosis; correlation analysis was used to evaluate the imaging histology characteristics and different pathological tissue grades, Correlation between lymph node metastasis and specific gene expression; use Kaplan-Meier survival curve to analyze the prognostic difference between patients with different imaging omics characteristics, and use log-rank method to test the difference; use cox survival model to compare clinical characteristics and imaging omics The characteristics and prognosis of patients (tumor-free survival, progression-free survival, overall survival) were analyzed by multiple factors. Further, deep learning algorithms can be used to automatically learn imaging omics features that may be related to molecular subtypes and prognosis to build prediction models.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 1500
Est. completion date December 30, 2023
Est. primary completion date December 30, 2022
Accepts healthy volunteers No
Gender Female
Age group N/A and older
Eligibility Inclusion Criteria:

1. Pathological and immunohistochemical diagnosis of breast cancer by biopsy

2. No MRI contraindications and no biopsy before MRI

3. Without radiotherapy and chemotherapy before enrollment

Exclusion Criteria:

1. Those with previous history of breast cancer surgery, hormone replacement therapy and chest radiotherapy

2. Patients with severe diseases who cannot cooperate with the examination

3. People with contraindications to MRI

4. The researchers believe that other conditions are not suitable for breast MRI examination

Study Design


Intervention

Procedure:
Multidisciplinary cooperative comprehensive treatment
Local surgery, radiation therapy, and systemic therapy such as chemotherapy, endocrine and molecular targeting.

Locations

Country Name City State
China Fudan University Shanghai Cancer Center Shanghai Shanghai

Sponsors (3)

Lead Sponsor Collaborator
Fudan University International Peace Maternity and Child Health Hospital, RenJi Hospital

Country where clinical trial is conducted

China, 

Outcome

Type Measure Description Time frame Safety issue
Primary Image prediction model of different molecular typing Build a model to predict molecular typing based on image
Establish a prediction model for predicting the risk of Luminal breast cancer recurrence
Establish a prediction model for predicting her2 targeted drug resistance
Establishing a triple-negative molecular model for breast cancer
30 December,2022----30 December,2023
See also
  Status Clinical Trial Phase
Recruiting NCT04681911 - Inetetamab Combined With Pyrotinib and Chemotherapy in the Treatment of HER2 Positive Metastatic Breast Cancer Phase 2
Completed NCT04890327 - Web-based Family History Tool N/A
Terminated NCT04066790 - Pyrotinib or Trastuzumab Plus Nab-paclitaxel as Neoadjuvant Therapy in HER2-positive Breast Cancer Phase 2
Completed NCT03591848 - Pilot Study of a Web-based Decision Aid for Young Women With Breast Cancer, During the Proposal for Preservation of Fertility N/A
Recruiting NCT03954197 - Evaluation of Priming Before in Vitro Maturation for Fertility Preservation in Breast Cancer Patients N/A
Terminated NCT02202746 - A Study to Assess the Safety and Efficacy of the VEGFR-FGFR-PDGFR Inhibitor, Lucitanib, Given to Patients With Metastatic Breast Cancer Phase 2
Active, not recruiting NCT01472094 - The Hurria Older PatiEnts (HOPE) With Breast Cancer Study
Completed NCT06049446 - Combining CEM and Magnetic Seed Localization of Non-Palpable Breast Tumors
Withdrawn NCT06057636 - Hypnosis for Pain in Black Women With Advanced Breast Cancer: A Feasibility Study N/A
Recruiting NCT05560334 - A Single-Arm, Open, Exploratory Clinical Study of Pemigatinib in the Treatment of HER2-negative Advanced Breast Cancer Patients With FGFR Alterations Phase 2
Active, not recruiting NCT05501769 - ARV-471 in Combination With Everolimus for the Treatment of Advanced or Metastatic ER+, HER2- Breast Cancer Phase 1
Recruiting NCT04631835 - Phase I Study of the HS-10352 in Patients With Advanced Breast Cancer Phase 1
Completed NCT04307407 - Exercise in Breast Cancer Survivors N/A
Recruiting NCT03544762 - Correlation of 16α-[18F]Fluoro-17β-estradiol PET Imaging With ESR1 Mutation Phase 3
Terminated NCT02482389 - Study of Preoperative Boost Radiotherapy N/A
Enrolling by invitation NCT00068003 - Harvesting Cells for Experimental Cancer Treatments
Completed NCT00226967 - Stress, Diurnal Cortisol, and Breast Cancer Survival
Recruiting NCT06006390 - CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT06037954 - A Study of Mental Health Care in People With Cancer N/A
Recruiting NCT06019325 - Rhomboid Intercostal Plane Block on Chronic Pain Incidence and Acute Pain Scores After Mastectomy N/A