Clinical Trials Logo

Clinical Trial Summary

Breast cancer (BC) is the most common cancer among women in worldwide and the second leading cause of cancer-related death. As the corner stone of BC screening, mammography is recognized as one of useful imaging modalities to reduce BC mortality, by virtue of early detection of BC. However, mammography interpretation is inherently subjective assessment, and prone to overdiagnosis. In recent years, artificial intelligence (AI)-Computer Aided Diagnosis (CAD) systems, characterized by embedded deep-learning algorithms, have entered into the field of BC screening as an aid for radiologist, with purpose to optimize conventional CAD system with weakness of hand-crafted features extraction. For now, stand-alone performance of novel AI-CAD tools have demonstrated promising accuracy and efficiency in BC diagnosis, largely attributed to utilization of convolution neural network(CNNs), and some of them have already achieved radiologist-like level. On the other hand, radiologists' performance on BC screening has shown to be enhanced, by leveraging AI-CAD system as decision support tool. As increasing implementation of commercial AI-CAD system, robust evaluation of its usefulness and cost-effectiveness in clinical circumstances should be undertaken in scenarios mimicking real life before broad adoption, like other emerging and promising technologies. This requires to validate AI-CAD systems in BC screening on multiple, diverse and representative datasets and also to estimate the interface between reader and system. This proposed study seeks to investigate the breast cancer diagnostic performance of AI-CAD system used for reading mammograms. In this work, we will employ a commercially available AI-CAD tool based on deep-learning algorithms (IBM Watson Imaging AI Solution) to identify and characterize the suspicious breast lesions on mammograms. The potential cancer lesions can be labeled and their mammographic features and malignancy probability will be automatically reported. After AI post-processing, we shall further carry out statistical analysis to determine the accuracy of AI-CAD system for BC risk prediction.


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT04156880
Study type Observational
Source Chinese University of Hong Kong
Contact
Status Withdrawn
Phase
Start date July 1, 2020
Completion date December 31, 2023

See also
  Status Clinical Trial Phase
Recruiting NCT04681911 - Inetetamab Combined With Pyrotinib and Chemotherapy in the Treatment of HER2 Positive Metastatic Breast Cancer Phase 2
Terminated NCT04066790 - Pyrotinib or Trastuzumab Plus Nab-paclitaxel as Neoadjuvant Therapy in HER2-positive Breast Cancer Phase 2
Completed NCT04890327 - Web-based Family History Tool N/A
Completed NCT03591848 - Pilot Study of a Web-based Decision Aid for Young Women With Breast Cancer, During the Proposal for Preservation of Fertility N/A
Recruiting NCT03954197 - Evaluation of Priming Before in Vitro Maturation for Fertility Preservation in Breast Cancer Patients N/A
Terminated NCT02202746 - A Study to Assess the Safety and Efficacy of the VEGFR-FGFR-PDGFR Inhibitor, Lucitanib, Given to Patients With Metastatic Breast Cancer Phase 2
Active, not recruiting NCT01472094 - The Hurria Older PatiEnts (HOPE) With Breast Cancer Study
Withdrawn NCT06057636 - Hypnosis for Pain in Black Women With Advanced Breast Cancer: A Feasibility Study N/A
Completed NCT06049446 - Combining CEM and Magnetic Seed Localization of Non-Palpable Breast Tumors
Recruiting NCT05560334 - A Single-Arm, Open, Exploratory Clinical Study of Pemigatinib in the Treatment of HER2-negative Advanced Breast Cancer Patients With FGFR Alterations Phase 2
Active, not recruiting NCT05501769 - ARV-471 in Combination With Everolimus for the Treatment of Advanced or Metastatic ER+, HER2- Breast Cancer Phase 1
Recruiting NCT04631835 - Phase I Study of the HS-10352 in Patients With Advanced Breast Cancer Phase 1
Completed NCT04307407 - Exercise in Breast Cancer Survivors N/A
Recruiting NCT03544762 - Correlation of 16α-[18F]Fluoro-17β-estradiol PET Imaging With ESR1 Mutation Phase 3
Terminated NCT02482389 - Study of Preoperative Boost Radiotherapy N/A
Enrolling by invitation NCT00068003 - Harvesting Cells for Experimental Cancer Treatments
Completed NCT00226967 - Stress, Diurnal Cortisol, and Breast Cancer Survival
Recruiting NCT06019325 - Rhomboid Intercostal Plane Block on Chronic Pain Incidence and Acute Pain Scores After Mastectomy N/A
Recruiting NCT06006390 - CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors Phase 1/Phase 2
Recruiting NCT06037954 - A Study of Mental Health Care in People With Cancer N/A