View clinical trials related to Brain Injuries.
Filter by:Mild traumatic brain injury (MTBI) is a common injury that involves loss of consciousness or alteration in mental status induced by an external mechanical force to the head. Education about symptoms and reassurance of a prompt recovery usually results in full recovery. However, a subgroup appears to have persistent symptoms and disability. This study will recruit MTBI patients from two Emergency Departments with the aim of identifying modifiable patient characteristics that can delay or prevent full recovery. A secondary aim is to determine if providing education in writing or in-person makes a difference.
This hypothesis-generating feasibility study to determine potential associations between a broad range of clinical neurological symptoms and Magnetic Resonance Image (MRI), data, and clinical findings involved in mild traumatic brain injury (mTBI). These associations will be examined over the acute and sub-acute period (baseline to 3 months) following injury to provide information useful for optimization of MR pulse sequences for mTBI applications. The intent of this study is to broadly generate a range of potential mTBI biomarkers detectable using investigational MR pulse sequence technologies. Feasibility data attained in this study may be used for engineering program decision-making and in support of future scientific assessment, engineering development, published research databases or registries mTBI data and images, and other purposes determined by the Sponsor. The results of this study are not intended for use in regulatory submissions. Subjects will be examined on commercially available MR scanner using investigational or standard of care MR coils and a series of investigational Application Packs containing a predetermined set of MR pulse sequences optimized by Sponsor
To assess the pharmacokinetic profile of tolvaptan in critically ill acute brain injury patients and to secondarily evaluate the clinical response and safety of tolvaptan in acute brain injured patients
Children with concussion may improve with intravenous fluids.
Deficits in memory, attention, cognitive, and executive functions are the most common disabilities after traumatic brain injury (TBI). Dopamine (DA) neurotransmission is implicated in these neural functions and dopaminergic pathways are recognized to be frequently disrupted after TBI. One of the most widely used DAergic drugs is methylphenidate (Ritalin®). Methylphenidate increases synaptic DA levels by binding to presynaptic dopamine transporters (DAT) and blocking re-uptake. PET with methylphenidate challenge to measure tonic DA release provides valuable insight into the molecular basis of attention-deficit hyperactivity disorder (ADHD) and addiction, as well as practical information regarding likely effectiveness of therapy (1). The objectives of this study are to use PET imaging with [11C]-raclopride, a D2/D3 receptor ligand, before and after administering methylphenidate, to measure endogenous DA release in patients who are experiencing problems with cognition, attention and executive function in the chronic stage after TBI. In addition, we will use TMS to test short intracortical inhibition, a gamma-aminobutyric acid receptor A (GABAA) - mediated phenomenon, which is under partial DA control, as a measure of dopaminergic activity on and off methylphenidate.
This hypothesis-generating feasibility study is being conducted to determine potential associations between a broad range of clinical neurological symptoms and MR images, data, and clinical findings involved in mild traumatic brain injury (mTBI). These associations will be examined over the acute and sub-acute period (approximately 3 months) following injury to provide information useful for optimization of MR pulse sequences for mTBI applications. The intent of this study is to broadly generate a range of potential mTBI biomarkers detectable using investigational MR pulse sequence technologies. Feasibility data attained in this study may be used for engineering program decision-making and in support of future scientific assessment, engineering development, published research databases or registries mTBI data and images, and other purposes determined by the Sponsor. The results of this study are not intended for use in regulatory submissions. Subjects will be examined on commercially available MR scanners using investigational or standard of care MR coils and a series of investigational Application Packs containing a predetermined set of MR pulse sequences optimized by GEHC.
The purpose of this study is to determine whether NNZ-2566 is safe and well tolerated in the treatment of mTBI in adolescents and adults.
This feasibility study is being conducted to determine potential associations between a broad range of clinical neurological symptoms and magnetic resonance images (MRI), data, and clinical findings involved in mild traumatic brain injury (mTBI). These associations will be examined over the acute and sub-acute period (approximately 3 months) following injury to provide information useful for optimization of MR pulse sequences for mTBI applications. Correlations exist over the sub-acute period in clinical neurological and MR data (images, image reads, and RAW data), which may indicate temporal evolution patterns. The intent of this study is to broadly generate potential biomarkers of temporal evolution of mTBI detectable in MR images and data ("MR mTBI biomarkers").
The purpose of this study is to determine whether there is a difference in cerebral oxygenation as measured by near-infrared spectroscopy (NIRS) in children with concussion and healthy controls.
In this study, an FDA-cleared device and type of treatment called "AMES," which stands for Assisted Movement with Enhanced Sensation, will be used to determine whether sensation in the upper limb of individuals with incomplete spinal cord injuries, acquired brain injury, or stroke improves along with movement through treatment. We hypothesize that measureable improvement in the sensation of the upper limb will precede improvement in functional movement.