View clinical trials related to Brain Injuries, Traumatic.
Filter by:The overall aim of the study is to advance the knowledge on the characterization and underlying pathophysiological mechanisms of persistent post-traumatic headache (PTH) with a direct impact on the ability to diagnose and manage PTH effectively. The investigators also aim to evaluate the efficacy of repetitive transcranial magnetic stimulation (rTMS), a novel intervention on PTH.
The purpose of this study is to examine measures of GrimAge clock in SOF members undergoing treatment for PTSD/TBI using CSB.
Traumatic Brain Injury (TBI) is a devastating condition and a leading cause of long-term disability. Every patient with TBI has a different type of injury and is treated differently from hospital to hospital making it very difficult to identify the most effective treatments. The current study focuses on the most severe types of TBI that require hospital ICU care - moderate to severe TBI (m-sTBI). The overall aim of this study is to collect data about how different hospitals manage m-sTBI in Australia, and to quantify the variability that likely exists. Recovery at 6 months post-injury will be collected to allow a better understanding on how different injuries and treatments affect long term outcomes.
Role of immunonutrition in modulating the lung microbiota of intubated TBJ patients and how this interaction may affect the infections and outcomes. For these reasons, the aims of our study are the evaluation of the impact of immunonutrition on the lung microbiota and the relationship between lung microbiota and infection in TBJ patients in ICU.
For the last decades, many aspects of human life have been altered by digital technology. For health care, this have opened a possibility for patients who have difficulties travelling a long distance to a hospital to meet with their health care providers over different digital platforms. With an increased digital literacy, and an aging population often living in the countryside, far from hospitals or other health care settings, an increasing need for digitalization of meetings between patients and health care personnel is inevitable. However, neuropsychological assessment is one sort of health care not possible to directly transfer into digital form. These evaluations are most often performed with well validated tests, only to be used in a paper-pencil form with a specially trained psychologist during physical meetings. The aim of this project is to investigate whether a newly developed digital neuropsychological test battery can be used to perform remote assessments of cognitive function in patients with neurological injuries and impairments. To this date, there are no such test batteries available in the Swedish language. Mindmore (www.mindmore.com) is a test system developed in Sweden, performing neuropsychological tests on a tablet, but still with the psychologist present in the room. This system is now evolving into offering the possibility for the patient to perform the test in their own home, using their own computer or tablet. The aim of the present research project is to validate this latter system (Mindmore Distance), using the following research questions: 1. Are the tests in Mindmore Distance equivalent to traditional neuropsychological tests in patients with traumatic brain injury, stroke, multiple sclerosis, Parkinson's Disease, epilepsy, and brain tumor? 2. Can the results from Mindmore Distance be transferred into neuropsychological profiles that can be used in diagnostics for specific patient groups? 3. How do the patients experience undergoing a neuropsychological evaluation on their own compared to traditional neuropsychological assessment in a physical meeting with a psychologist?
The project goal is to promote a feasible and effective approach to communicative disorders in neurological and psychiatric populations, focused on the pragmatics of language. Pragmatics allows speakers to use and interpret language in context and to engage in successful communication. Pragmatic language disorder is widespread in clinical conditions and causes reduced social interactions and lower quality of life for both patients and their family. Yet it is seldom considered in assessment and rehabilitation.
This pilot study will compare a yoga program to a non-yoga exercise program in adults with brain injuries. The investigators will measure possible improvements in balance and heartrate. The investigators also plan to measure changes in brain function and link balance and/or heartrate improvements to changes in brain function. Ideally, this work will create a foundation for a larger-scale study.
Traumatic Cerebral Vascular Injury (TCVI) is a common consequence of traumatic brain injury (TBI), including mild TBI (mTBI). TCVI is associated with poor recovery after TBI in animal models. TCVI can be measured non-invasively in humans, and therapies targeting TCVI are attractive candidates to ameliorate the consequences of TBI. Sildenafil potentiates nitric oxide (NO) dependent vasodilatation and is approved by the Food and Drug Administration (FDA) for the treatment of erectile dysfunction and primary pulmonary hypertension. In pre-clinical models of stroke, sildenafil improves cerebral blood flow (CBF), promotes, angiogenesis, neurogenesis and improves recovery. In an initial Phase 2a trial (NCT01762475) of sildenafil in patients with chronic moderate to severe TBI, the investigators found that low dose sildenafil (25 mg BID) therapy is safe and well tolerated, that a single dose of sildenafil 50 mg potentiates CVR in areas of the brain with dysfunctional endothelium, and that CVR is a reliable diagnostic marker of TCVI and has potential as a pharmacodynamic and predictive biomarker. In this proposal, the investigators will conduct a randomized clinical trial to determine the optimal PDE5 inhibitor dose to improve or normalize microvascular function (as measured by the change in CVR measurements before and after a single dose of sildenafil, or ΔCVR) using a range of sildenafil citrate doses: 20, 40, 80 mg) in chronic TBI patients. The investigators will also test the safety and tolerability of the same dose ranges of chronic (4-week) thrice daily sildenafil or placebo administration in chronic TBI patients and explore its effects on chronic symptoms and clinical outcomes.
The goal of this experimental observation study is to figure out differently expressed biomarkers in body fluid in traumatic brain injury patients. The main questions it aims to answer is: - Which RNA, protein and metabolites are differently expressed in lesion tissues? - What molecular mechanism is participated in TBI? Participants will be treated by emergency operation, and their body fluid samples will be collected in emergency room and during the operation.
The goal of this experimental observation study is to figure out differently expressed biomarkers in lesion tissues in traumatic brain injury or hypertension intracranial hemorrhage patients. The main questions it aims to answer is: - Which RNA, protein and metabolites are differently expressed in lesion tissues? - What molecular mechanism is participated in TBI or ICH? Participants will be treated by emergency operation, and their lesion tissues will be collected during the operation.