Clinical Trials Logo

Brain Injuries, Traumatic clinical trials

View clinical trials related to Brain Injuries, Traumatic.

Filter by:

NCT ID: NCT05408975 Recruiting - Clinical trials for Traumatic Brain Injury

Treating Civilian Traumatic Brain Injury With High Definition Transcranial Direct Current Stimulation (ciTBI-HDtDCS)

Start date: January 1, 2023
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of the study is to test whether low level electric stimulation, called transcranial Direct Current Stimulation (tDCS), on the part of the brain (i.e., pre-supplementary motor area) thought to aid in memory will improve verbal retrieval in civilian (non-military, non-veteran) participants with histories of traumatic brain injuries. The primary outcome measures are neuropsychological assessments of verbal retrieval, and the secondary measures are neuropsychological assessments of other cognitive abilities and electroencephalography (EEG) measures. Additionally, the study will examine the degree to which baseline assessments of cognition, concussion history, structural brain imaging, and EEG predict responses to treatment over time, both on assessments administered within the intervention period and at follow-up.

NCT ID: NCT05407948 Completed - Stroke Clinical Trials

The Effect of Cognitive Reserve on Outcome After Stroke or Traumatic Brain Injury

Start date: November 2, 2018
Phase:
Study type: Observational

A long-term follow-up study of patients who acquired a stroke or traumatic brain injury (TBI) 5-15 years ago. Primary objective is to describe the interaction between measures of cognitive reserve and neuropsychological variables, psychological variables and healthcare usage in relation to outcome (i.e work return, satisfaction with life, psychological well-being and overall outcome) after stroke or traumatic brain injury. Secondary objectives are to describe differences in fatigue related to cognitive reserve after stroke or TBI and to describe differences in health-care usage related to cognitive reserve after stroke or TBI.

NCT ID: NCT05405517 Completed - Clinical trials for Traumatic Brain Injury

Translation of Modified Fatigue Impact Scale in Urdu Language

Start date: May 15, 2021
Phase:
Study type: Observational

Cross cultural analytical study to translate Modified fatigue impact scale MFIS) in Urdu language. Along with the translated version by evaluating its validity and reliability among the patients of traumatic brain injury. No such study has been previously conducted in Pakistan which translate this scale in Urdu and follows the proper cross- culture adaptation.Condition or disease: Traumatic brain injury. Convenient sampling technique would be used.

NCT ID: NCT05402761 Recruiting - Clinical trials for Traumatic Brain Injury

Effects of Nurse-Guided BBTi for Improving Insomnia : in Patients at the Recovery Following Traumatic Brain Injury

Start date: August 15, 2022
Phase: N/A
Study type: Interventional

nsomnia is a frequent complaint reported by patients with TBI, and exacerbates their ability to return to productive activity, which subsequently elevate related healthcare costs and burden. Existing literatures found that effects of CBTi, first-line therapy for insomnia, on post-traumatic insomnia is still debated, indicating that developing an alternative nonpharmacological therapy for alleviating insomnia following TBI is required. Besides, digital health is one of strategies to achieve precision health. Thus far, knowledge regarding whether mobile-delivered BBTi has non-inferiority effects as BBTi in treating insomnia is still lacking. Therefore, a RCT with a large sample size to examine the immediate and lasting effects of BBTi and mobile-delivered BBTi on insomnia, mood disturbances, and cognitive dysfunctions in patients following TBI at the recovery stage compared with the control participants.

NCT ID: NCT05400343 Not yet recruiting - Clinical trials for Traumatic Brain Injury

Efficacy of Lung and Inferior Vena Cava Sonography for Fluid Optimization

Start date: June 15, 2022
Phase: N/A
Study type: Interventional

Traumatic brain injury (TBI) is a leading cause of death and disability in trauma patients. As the primary injury cannot be reversed, management strategies must focus on preventing secondary injury by avoiding hypotension and hypoxia and maintaining appropriate cerebral perfusion pressure (CPP), which is a surrogate for cerebral blood flow (CBF). The goal should be euvolemia and avoidance of hypotension. The assessment of a patient's body fluid status is a challenging task for modern clinicians. The use of Ultrasonography to assess body fluids has numerous advantages. The concept of using lung ultrasound for monitoring the patient is one of the major innovations that emerged from recent studies. Pulmonary congestion may be semiquantified using lung ultrasound and deciding how the patient tolerates fluid. Inferior vena cava (IVC) sonography and point-of-care ultrasound (POCUS) has become widely used as a tool to help clinicians prescribe fluid therapy. Common POCUS applications that serve as guides to fluid administration rely on assessments of the inferior vena cava to estimate preload and lung ultrasound to identify the early presence of extravascular lung water and avoid fluid over resuscitation In this study we will use the measurements of both lung and IVC together to guide fluid dosage in critically ill patients with TBI. We will also use ONSD as a mirror for intra-cranial pressure (ICP).

NCT ID: NCT05397873 Recruiting - Stroke Clinical Trials

Biofeedback for Hemianopia Vision Rehabilitation

Start date: July 8, 2021
Phase: N/A
Study type: Interventional

Patients with brain injury secondary to stroke, surgery, or trauma frequently suffer from homonymous hemianopia, defined as vision loss in one hemifield secondary to retro- chiasmal lesion. Classic and effective saccadic compensatory training therapies are current aim to reorganize the control of visual information processing and eye movements or, in other words, to induce or improve oculomotor adaptation to visual field loss. Patients learn to intentionally shift their eyes and, thus, their visual field border, into the area corresponding to their blind visual field. This shift brings the visual information from the blind hemifield into the seeing hemifield for further processing. Patients learn, therefore, to efficiently use their eyes "to keep the 'blind side' in sight". Biofeedback training (BT) is the latest and newest technique for oculomotor control training in cases with low vision when using available modules in the new microperimetry instruments. Studies in the literature highlighted positive benefits from using BT in a variety of central vision loss, nystagmus cases, and others.The purpose of this study is to assess systematically the impact of BT in a series of cases with hemianopia and formulate guidelines for further use of this intervention in vision rehabilitation of hemianopia cases in general.

NCT ID: NCT05397704 Completed - Clinical trials for Brain Injuries, Traumatic

Brain Oximeter Calibration and Validation Study

TPOT
Start date: October 10, 2022
Phase: N/A
Study type: Interventional

The purpose of the study is to calibrate and to validate the accuracy of the oximeter with an estimate of brain oxygen levels assessed by measuring arterial and internal jugular vein blood oxygen saturations.

NCT ID: NCT05391594 Completed - Cerebral Palsy Clinical Trials

Effect of Trunk Support on Academic Engagement of Children With Severe Disability

Start date: May 31, 2018
Phase: N/A
Study type: Interventional

This study evaluates the effect of optimizing trunk support based on segmental principles of trunk control, on academic engagement of children in academic settings.

NCT ID: NCT05387018 Recruiting - Clinical trials for Traumatic Brain Injury

the Effects of Hyperbaric Oxygen on Non-acute Traumatic Brain Injury

Start date: March 31, 2022
Phase:
Study type: Observational

Traumatic brain injury (TBI) continues to be a major cause of death and disability throughout the world. The reduced cerebral blood flow secondary to the direct trauma-induced damage deregulates cerebral metabolism and depletes energy stores within the brain. Diffusion barriers to the cellular delivery of oxygen develop and persist. Besides, TBI often leads to intracranial hypertension, which in turn exacerbates diffusion disorders, further reducing cerebral oxygenation, and deteriorates the injury. By increasing the partial pressure of oxygen in blood, reducing intracranial pressure and cerebral edema, Hyperbaric oxygen therapy (HBO2) has been used in early treatment of TBI. However, due to the different severity of TBI, the clinical situation of early insult is complex and unpredictable, ordinarily there was a time delay between TBI and onset of HBO2 treatment averaging more than 2 weeks, especially in patients with severe TBI. Whether the delayed intervention is still effective is controversial.

NCT ID: NCT05365776 Recruiting - Clinical trials for Mild Traumatic Brain Injury

Graded Exposure Therapy for Fear Avoidance Behaviour After Concussion

GET-FAB
Start date: June 1, 2022
Phase: N/A
Study type: Interventional

Concussions are very common. Although many people recover well from concussion, some will have persistent symptoms and difficulties with daily activities. How people cope with their symptoms following concussion powerfully influences their recovery. Fear avoidance behaviour is a particularly unhelpful approach to coping, in which people perceive their pre-injury activities as unnecessarily dangerous and take great care to avoid overexertion and overstimulation. The investigators developed and pilot tested a behavioural therapy, called graded exposure therapy, to reduce fear avoidance behaviour. Our preliminary work suggested that graded exposure therapy was acceptable to patients with concussion and possibly beneficial for their recovery. The GET FAB after concussion study will assess the effectiveness of graded exposure therapy.