View clinical trials related to Brain Cancer.
Filter by:This is a research study of patients with diffuse intrinsic pontine gliomas. We hope to learn about the safety and efficacy of treating pediatric diffuse intrinsic pontine glioma patients with the EGFRvIII peptide vaccine after conventional radiation.
The purpose of this study is to collect bone marrow samples for experimental studies.
The purpose of this study is to estimate the rate of local control at the treated site of the metastasis as a function of 1mm versus 3mm expansion about the gross tumor volume (GTV). Each lesion, not each patient will be ranndomized to either the 1mm or 3mm margin with 40 lesions randomized to each arm.
This is a "tissue banking and data review" research study that also has a "clinical" research part: - The goal of the tissue banking part of this study is to store tissue in a research tissue bank by the International Society for Pediatric Oncology (SIOP) at an international reference center for choroid plexus tumors. The tissue will be used in future research related to cancer. - The goal of the data review part of this study is to collect information from the medical records of patients with choroid plexus tumors, and to store the information in SIOP databases for use in future research related to cancer. - The goal of this clinical research study is to compare 4 chemotherapy treatments for choroid plexus tumors. The safety and level of effectiveness of these study treatments will be compared and studied. The study drugs include different combinations of etoposide, carboplatin, vincristine, cyclophosphamide, methotrexate, doxorubicin, cisplatin, dactinomycin, temozolomide, and irinotecan.
Standard treatment for patients with diffuse pontine tumors is radiation therapy, but less than 10% of patients are cured. Adding standard chemotherapy has not improved the cure rate. Standard treatment for high-grade astrocytomas is surgery and radiation. The surgeon removes as much of the tumor as she or he can. Radiation after that tries to kill any cancer cells that are left. Some patients also get chemotherapy. These are anti-cancer drugs. They can be given during or after radiation. Current standard treatments do not cure many patients. In this study the doctors are adding a new medication called cetuximab to the treatment and will also use a chemotherapy medication (irinotecan) that has been promising for patients treated for recurrent disease.
The purpose of this study is to evaluate high and low areas of growth, or proliferation, within the tumor. An imaging technique using a very small amount of a radioactive tracer called 18Ffluoro-deoxy-L-thymidine (18F-FLT) can detect areas of rapid growth within the tumor. This imaging technique is called a FLT PET imaging. This present study involves obtaining one scan using FLT PET imaging. The goal of this study is to investigate associations between the imaging findings showing differences in growth rate within the tumor and the biology of the tumor that is measured in the sampled tumor tissue. This information may be used in future brain tumor patients to determine the best combination of treatment for individual patients. These studies may also improve our understanding of the types of changes taking place in brain tumor tissue that could improve individual patient outcome. FLT is produced for human use by the MSKCC cyclotron facility under an investigational new drug (IND) approval issued by the US Food and Drug Administration (FDA). This means that FLT is produced under strict rules and regulations, is considered safe, and has been approved for use in humans for certain disease conditions. 18F-FLT has been used in several research studies to date at this institution.
The purpose of this study is to determine the maximum tolerated dose (MTD) of vorinostat given concurrently with stereotactic radiosurgery (SRS) to treat non-small cell lung cancer (NSCLCA) brain metastases in patient with 1-4 lesions.
The maximum tolerated dose of 3-session (ie, treatment) stereotactic radiosurgery (SRS) to treat brain metastases greater than 4.2 cm³ in size will be determined. This study investigates if increasing radiation dose improves outcome for patients without greater toxicity (side effects).
The goal of this clinical research study is to learn if the combination of Avastin (bevacizumab) and Tykerb (lapatinib) can help to control ependymoma in pediatric patients. The safety of this drug combination will also be studied.
This goal of this research study is to learn more about fatigue, sleep quality, and other symptoms in patients with primary brain tumors who are being treated with radiation therapy. Objectives: PRIMARY OBJECTIVE: 1. The primary objective of this study is to provide preliminary data describing the severity and change over time in fatigue using the Brief Fatigue Inventory (BFI) during radiation therapy for patients with primary gliomas. SECONDARY OBJECTIVES: 1. To evaluate longitudinal changes in the severity of symptoms and the mean symptom burden as measured by the M.D. Anderson Symptom Inventory-Brain Tumor Module (MDASI-BT) and mood using the Profile of Mood States (POMS) during radiation therapy. 2. To assess alterations in circadian rhythms using actigraphy during radiation therapy and the association with sleep quality tools - Pittsburgh Sleep Quality Index (PSQI) and the Epworth Sleepiness Scale(ESS), and the severity of BFI and MDASI-BT scores over time. 3. To explore the association between the levels of salivary hormones (melatonin and cortisol) and the occurrence of fatigue and symptom burden.