View clinical trials related to ARDS.
Filter by:Acute respiratory distress syndrome (ARDS) accounts for almost 10% of intensive care units (ICU) admissions. Three ARDS stages have been defined, based on the PaO2/FIO2 ratio measured with positive end-expiratory pressure (PEEP) ≥5 cmH2O: mild (201-300 mmHg), moderate (200-101 mmHg), and severe (≤100mmHg). They represent 30.0%, 46.6%, and 23.4% of ARDS, respectively. Mechanical invasive ventilation (MV), the cornerstone of ARDS patient care, has a primary goal to protect the lung from ventilator-induced lung injury (VILI). Delivering MV in a prone position (PP) has been shown to improve oxygenation, protect the lung through a better homogenization of lung stress/strain, and stabilize hemodynamics. A meta-analysis of four randomized controlled trials showed beneficial effect of PP vs. supine position (SP) in the most hypoxemic patients. A fifth randomized controlled trial further showed a significant reduction in mortality with PP in ARDS patients with PaO2/FIO2 <150 mmHg, when neuromuscular blockade and long prone positioning sessions were used. Therefore, PP has since been strongly recommended for ARDS patients with PaO2/FIO2 <150 mmHg. Yet, there is limited evidence in patients with mild to moderate ARDS. There are, however, strong arguments supporting the need for a new trial in ARDS patients with PaO2/FIO2 in the range 150-300 mmHg: 1. There is no trial that has specifically tested PP in this ARDS subset; 2. PP is safe and has become a standard of care in ICU; 3. Should VILI prevention be a mechanism through which PP improves survival, this should be involved in all ARDS patients; 4. The mortality at hospital discharge in this subset of ARDS remains significant, amounting to 34.9% (95% confidence intervals 31.4-38.5%) in mild and 40.3% (37.4-43.3) in moderate stages; 5. Among 580 patients with mild ARDS at admission to the ICU, in-hospital mortality was 10%, 30%, and 37% for those who improved, persisted, and worsened ARDS, respectively. 6. Finally, PP has been shown to be cost-effective under commonly accepted thresholds. The hypothesis is that in patients within the 150-300mmHg PaO2/FIO2 range at the time of ARDS diagnosis, PP can reduce mortality as compared to a similar group left in the SP.
This study aims to establish whether tocilizumab has any significant effect on procalcitonin levels on patients diagnosed with COVID-19 pneumonia requiring intensive care admission. The effects on other biochemical and clinical markers are also considered.
The study was designed to comparison the effectiveness of recruitment maneuvers(RM) and lung protective ventilation strategy(LPVS) for patients with moderate to severe ARDS. ARDS patients were randomly divided into two groups, the experimental group (LPVS+RM group) and the control group (LPVS group). The method of RM refers to that under FiO2=100% oxygen concentration and fixed inspiratory pressure (15cmH2O), the PEEP starts from 10 cmH2O and increases at a pressure of 5 cmH2O every minute until the Peak inspiratory Pressure(PIP) reaches 55cmH2O, and the arterial blood oxygen is monitored at the same time. The pressure point when the partial pressure of arterial oxygen PaO2+PaCO2≧400mmHg is the best PEEP. The primary endpoint indicators were oxygenation index(OI) and lung ultrasound score(LUS) from day 1 to day 7. The secondary outcome indicators were the ventilator days, length of stay in the ICU (days), and ICU mortality.
This study is a multicenter, prospective, observational cohort study. The subjects were patients who developed ARDS within the preceding 72h. They were divided into 2 groups based on the use of sivelestat sodium which was determined by the physician in charge based on the condition of the patients: sivelestat sodium group and conventional treatment group. 560 patients were planned to be enrolled, with 280 patients in each group. In the sivelestat sodium group, patients were treated with sivelestat sodium within 72h of the diagnosis of ARDS. After 5 days of sivelestat treatment, sivelestat treatment should be stopped if the oxygenation index is greater than 300mmHg for at least 3 consecutive times; otherwise, sivelestat treatment should be continued until the oxygenation index is greater than 300mmHg for at least 3 consecutive times; if sivelestat treatment is continued until the 14th day, the drug should be stopped regardless of the oxygenation situation. Baseline data and Murray lung injury score, inflammatory markers, routine test results, duration of ECMO use/length of hospital stay/length of ICU stay were recorded at 1, 3,5, and 7 days after patients were enrolled, and patients were followed up on the 28th and 90th days.
The OMELETTE study is a randomised, controlled, unicentric, open-label study to prove the noninferiority of reduced prone position (PP) sessions (more tan 16 hours) versus prolonged PP (48 hours).
In recent months, more and more studies suggest tele-rehabilitation as a means to be exploited to reduce the risk of contagion. The intent of our study is to verify the effectiveness of a tele-rehabilitation intervention through the application of a respiratory rehabilitation program supported by contact with physiotherapists, in patients with outcomes from SARS-CoV-2 infection discharged from the various medical departments and taken over by physiotherapists after physiatric evaluation. Faced with the same rehabilitation program prescribed to all patients, the primary objective of our study is to detect whether patients supported by remote rehabilitation after hospitalization improve both adherence to the rehabilitation program and cardiorespiratory endurance and dyspnea symptoms assessed with the Six Minute Walking Test scale (6MWT). This test is validated for multiple pathologies, including idiopathic pulmonary fibrosis, the clinic of which could be comparable to the outcomes of coronavirus interstitial pneumonia as suggested by the literature. The secondary objectives concern the assessment of the impact of physical exercise assisted by tele-rehabilitation detected through: the assessment of the quality of life (Saint George Respiratory Questionnaire );the assessment of autonomy in daily life activities (Barthel Index Dyspnea Scale), the evaluation of the variation in thoracic expansion and lung volumes (with COACH , an instrument for respiratory physiotherapy that measures the inspiratory volume in ml); the evaluation of muscle strength and endurance (One Minute Sit To Stand) ; the detection of dyspnea during the execution of the exercises (Modified Borg scale); the assessment of the functionality of the lower limbs (Short Physical Performance Battery)
This is a monocentric, prospective, observational study that will be conducted in the general ICU of San Gerardo Hospital (Monza, Italy). Study protocol will be started when NMBAs infusion will be stopped for clinical reason until regain of spontaneous breathing activity. Patients will be enrolled at the moment of NMBAs infusion interruption ("baseline" phase). Clinical data will be collected: hemodynamics, ventilation parameters and respiratory mechanics, arterial blood gas analysis, drugs used for sedation and their dosages. An EIT belt will be positioned around the patient's chest when clinical signs of spontaneous breathing activity will be detectable (unstable flow curve on the ventilator, deflection in airway pressure during an expiratory pause). In this phase ("NMBA interruption") same clinical data will be collected as at baseline. Patients will be ventilated in the same ventilation mode as before (Volume Controlled mechanical ventilation), but the inspiratory trigger on the ventilator will be turned on to reduce patient-ventilator asynchronies. When an EIT trace lasting at least 10 minutes will be recorded, an NMBA bolus (as prescribed by the treating physician) will be administered and a continuous infusion will be restarted. Clinical data will be collected again in this phase ("NMBA restart").
Sivelestat sodium has been approved for use in patients with SIRS and ALI, but whether it can protect patients with sepsis from developing ARDS remains unknown.The aim of this study was to determine whether sivelestat sodium has a protective effect on ARDS in patients with sepsis.
The COVID-19 pandemic has led to an increase in the number of patients admitted to intensive care units (ICU) with acute respiratory distress syndrome (ARDS). ARDS is a severe, life-threatening medical condition characterised by inflammation and fluid in the lungs. There is no proven therapy to reduce fluid leak, also known as pulmonary oedema, in ARDS. However, recent studies have discovered that imatinib prevents fluid leak in the lungs in inflammatory conditions, while leaving the immune response intact. Adding imatinib into the standard care package may, therefore, decrease mortality and reduce the duration of mechanical ventilation compared with standard care alone, in critically-ill patients with COVID-19. To help determine the impact of imatinib in these patients we present a randomised, double-blind, multi-centre, 2-arm, parallel-group, placebo-controlled clinical study of intravenous imatinib in 84 mechanically-ventilated, adult subjects with COVID-19-related ARDS. Study participants (patients who have consented into the study) will receive the study drug (imatinib or placebo) twice daily for a period of 10 days. The effect of the intervention will be tested by measuring the change from baseline in the Oxygen Saturation Index (OSI) at day 10. OSI is a non-invasive means of measuring oxygenation and is an independent predictor of mortality in patients with ARDS, serving thus as a relevant endpoint from which to assess the efficacy of imatinib. Other measurements will include regular blood tests as part of safety assessments. Time on ventilation and morbidity and mortality will be recorded as secondary outcome measures. Blood tests will also allow the investigation of the pharmacokinetic properties of imatinib, as well as biomarkers of inflammation.
Since the beginning of the SARS CoV 2 pandemia, the SARS CoV 2 was frequently compared with the seasonal influenza virus. However, few studies compared patients presenting acute respiratory distress syndrome (ARDS) induced by these viruses, with results being discordant. Our study means to compare mortality and morbidity of patients hospitalized in an intensive care unit (ICU) with ARDS induced by SARS CoV-2 and seasonal influenza.