Clinical Trials Logo

ARDS clinical trials

View clinical trials related to ARDS.

Filter by:
  • No longer available  
  • Page 1

NCT ID: NCT04346277 No longer available - COVID Clinical Trials

Compassionate Use Open-Label Anti-CD14 Treatment in Patients With SARS-CoV-2 (COVID-19)

Start date: n/a
Phase:
Study type: Expanded Access

This protocol proposes to use IC14, a recombinant chimeric monoclonal antibody (mAb) recognizing human CD14, to block CD14-mediated cellular activation in patients early in the development of ARDS. The binding of IC14 to human CD14 prevents CD14 from participating in the recognition of PAMPs and DAMPs due to SARS-CoV-2 infection. The putative mechanism of action of IC14 in ARDS is blockade of PAMP and DAMP interactions with CD14, thus attenuating the inflammatory cascade that leads to increased endothelial and epithelial permeability and injury resulting in alveolar injury and fluid accumulation characteristic of ARDS. IC14 is a chimeric monoclonal antibody that binds to CD14 with high affinity and inhibits signaling via membrane and soluble CD14. Blocking CD14 with IC14 treatment in normal volunteers strongly inhibits systemic inflammation in response to bacterial endotoxin (LPS). University of Washington conducted a small NIH-funded pilot trial of IC14 treatment in 13 patients with ARDS, which suggested that IC14 treatment reduced alveolar inflammation and decreased BAL cytokines. IC14 was also the subject of IND 105803 for a phase 2 study of ARDS from all causes which we propose to revise for the COVID-19 indication. A dosing regimen for IC14 with favorable pharmacokinetics supporting once daily intravenous dosing has been defined, making this an acceptable treatment for hospitalized patients. Two pharmacodynamic biomarkers can be used that are related to CD14, measurements of sCD14 (serum at baseline; urine at baseline and follow up) as well as a CD14 fragment (sCD14-ST; presepsin). A CD14 target engagement assay is available. Therefore, because of the central role of CD14 in the amplification of lung inflammatory responses leading to severe lung injury and the safety record of IC14 in humans, we propose to have an open-label protocol to test the safety and potential efficacy of IC14 treatment in preventing the progression of severe respiratory disease in patients hospitalized with COVID-19.