Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT04033146
Other study ID # H18208
Secondary ID F32AG063460
Status Completed
Phase N/A
First received
Last updated
Start date February 4, 2020
Est. completion date May 23, 2023

Study information

Verified date June 2024
Source Georgia Institute of Technology
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The investigators seek to determine whether ankle exoskeletons can reduce metabolic energy expenditure during walking for users across the age-spectrum.


Description:

Older adults walk with greater metabolic rates than young adults. Growing evidence suggests that the greater older adult metabolic rates are related to the structural properties of their lower leg tissues. The tendons of the leg of older adults are more compliant than that of young adults. Accordingly, older adult leg tendons stretch more under a given load, such as during walking, causing their muscles to operate at shorter, less optimal lengths, and higher activity levels than the muscles of young adults - a less economical way to produces force. Thus, the investigators seek to examine whether wearing wearable robotic boots (i.e., ankle exoskeletons) could enable muscles to produce force more economically. By adding an exoskeleton in-parallel to the ankle, the investigators hypothesize that older adults will walk with lower whole-body metabolic rate than without the exoskeleton assistance. In this study, the investigators will have both young and older adult participants walk on a treadmill with a commercially available ankle exoskeleton set in multiple assistance modes. During these trials, the investigators will measure the metabolic cost of walking in young and older adults and also take many physiological and biomechanical measurements to help assess how exoskeletons work to reduce walking effort.


Recruitment information / eligibility

Status Completed
Enrollment 16
Est. completion date May 23, 2023
Est. primary completion date May 23, 2023
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Subjects must be able to walk for 60 minutes in a 90-minute time frame. - Subjects are apparently free of cardiovascular, metabolic, and renal disease, which includes no signs or symptoms suggestive of cardiovascular, metabolic or renal disease. - Subjects have no current musculoskeletal injury. - Subjects need to be either 18-45 or 65+ years old. These criteria meet the American College of Sports Medicine's 2015 guidelines for participant health screening prior to joining a moderate or moderate-to-vigorous exercise protocol. (Riebe et al., 2015). Exclusion Criteria: - Have dementia or an inability to give informed consent - Have a musculoskeletal injury or feel pain while walking - Have a history of dizziness and/or balance problems - Have cardiovascular, heart, metabolic, or renal disease, or respiratory problems - Smoke cigarettes - Asthma - Feel pain or discomfort in the chest, neck, jaw, arms during rest or exercise - Have orthopnea or paroxysmal nocturnal dyspnea - Have ankle edema - Have palpitations or tachycardia - Have a heart murmur - Have had a heart attack - Have diabetes - Have a pace maker - Have unusual shortness of breath with usual activities - Are <18 or 46-64 years of age - Do not speak or understand English

Study Design


Related Conditions & MeSH terms


Intervention

Device:
Ankle Exoskeleton Assistance
The investigators will use ankle-exoskeletons to modulate the amount of mechanical power generated by the user's ankle joint. That is, participants will walk in a robotic device that either (a) adds a spring or (b) a motor in parallel with their calf muscles to help them generate a stronger propulsive push-off that could reduce the effort of walking.

Locations

Country Name City State
United States Physiology of Wearable Robotics Laboratory (Georgia Tech) Atlanta Georgia

Sponsors (2)

Lead Sponsor Collaborator
Georgia Institute of Technology National Institute on Aging (NIA)

Country where clinical trial is conducted

United States, 

References & Publications (37)

Asbeck AT, De Rossi SM, Holt KG, and Walsh CJ. A biologically inspired soft exosuit for walking assistance. The international journal of robotics research 34: 744-762, 2015.

Biewener AA, Farley CT, Roberts TJ, Temaner M. Muscle mechanical advantage of human walking and running: implications for energy cost. J Appl Physiol (1985). 2004 Dec;97(6):2266-74. doi: 10.1152/japplphysiol.00003.2004. Epub 2004 Jul 16. — View Citation

Browne MG, Franz JR. The independent effects of speed and propulsive force on joint power generation in walking. J Biomech. 2017 Apr 11;55:48-55. doi: 10.1016/j.jbiomech.2017.02.011. Epub 2017 Feb 21. — View Citation

Cavagna GA, Kaneko M. Mechanical work and efficiency in level walking and running. J Physiol. 1977 Jun;268(2):467--81. doi: 10.1113/jphysiol.1977.sp011866. — View Citation

CAVAGNA GA, SAIBENE FP, MARGARIA R. MECHANICAL WORK IN RUNNING. J Appl Physiol. 1964 Mar;19:249-56. doi: 10.1152/jappl.1964.19.2.249. No abstract available. — View Citation

Collins SH, Wiggin MB, Sawicki GS. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature. 2015 Jun 11;522(7555):212-5. doi: 10.1038/nature14288. Epub 2015 Apr 1. — View Citation

Csapo R, Malis V, Hodgson J, Sinha S. Age-related greater Achilles tendon compliance is not associated with larger plantar flexor muscle fascicle strains in senior women. J Appl Physiol (1985). 2014 Apr 15;116(8):961-9. doi: 10.1152/japplphysiol.01337.2013. Epub 2014 Feb 6. — View Citation

DeVita P, Helseth J, Hortobagyi T. Muscles do more positive than negative work in human locomotion. J Exp Biol. 2007 Oct;210(Pt 19):3361-73. doi: 10.1242/jeb.003970. — View Citation

DeVita P, Hortobagyi T. Age causes a redistribution of joint torques and powers during gait. J Appl Physiol (1985). 2000 May;88(5):1804-11. doi: 10.1152/jappl.2000.88.5.1804. — View Citation

Elliott G, Sawicki GS, Marecki A, Herr H. The biomechanics and energetics of human running using an elastic knee exoskeleton. IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650418. doi: 10.1109/ICORR.2013.6650418. — View Citation

Farris DJ, Sawicki GS. The mechanics and energetics of human walking and running: a joint level perspective. J R Soc Interface. 2012 Jan 7;9(66):110-8. doi: 10.1098/rsif.2011.0182. Epub 2011 May 25. — View Citation

Ferris DP, Sawicki GS, Domingo A. Powered lower limb orthoses for gait rehabilitation. Top Spinal Cord Inj Rehabil. 2005;11(2):34-49. doi: 10.1310/6gl4-um7x-519h-9jyd. — View Citation

Franz JR, Slane LC, Rasske K, Thelen DG. Non-uniform in vivo deformations of the human Achilles tendon during walking. Gait Posture. 2015 Jan;41(1):192-7. doi: 10.1016/j.gaitpost.2014.10.001. Epub 2014 Oct 12. — View Citation

Gottschall JS, Kram R. Energy cost and muscular activity required for propulsion during walking. J Appl Physiol (1985). 2003 May;94(5):1766-72. doi: 10.1152/japplphysiol.00670.2002. Epub 2002 Dec 27. — View Citation

Griffin TM, Tolani NA, Kram R. Walking in simulated reduced gravity: mechanical energy fluctuations and exchange. J Appl Physiol (1985). 1999 Jan;86(1):383-90. doi: 10.1152/jappl.1999.86.1.383. — View Citation

Holt NC, Roberts TJ, Askew GN. The energetic benefits of tendon springs in running: is the reduction of muscle work important? J Exp Biol. 2014 Dec 15;217(Pt 24):4365-71. doi: 10.1242/jeb.112813. Epub 2014 Nov 13. — View Citation

Huang HJ, Kram R, Ahmed AA. Reduction of metabolic cost during motor learning of arm reaching dynamics. J Neurosci. 2012 Feb 8;32(6):2182-90. doi: 10.1523/JNEUROSCI.4003-11.2012. — View Citation

Malcolm P, Derave W, Galle S, De Clercq D. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS One. 2013;8(2):e56137. doi: 10.1371/journal.pone.0056137. Epub 2013 Feb 13. — View Citation

Martin PE, Rothstein DE, Larish DD. Effects of age and physical activity status on the speed-aerobic demand relationship of walking. J Appl Physiol (1985). 1992 Jul;73(1):200-6. doi: 10.1152/jappl.1992.73.1.200. — View Citation

Mian OS, Thom JM, Ardigo LP, Minetti AE, Narici MV. Gastrocnemius muscle-tendon behaviour during walking in young and older adults. Acta Physiol (Oxf). 2007 Jan;189(1):57-65. doi: 10.1111/j.1748-1716.2006.01634.x. — View Citation

Mooney LM, Rouse EJ, Herr HM. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage. J Neuroeng Rehabil. 2014 May 9;11:80. doi: 10.1186/1743-0003-11-80. — View Citation

Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA, Castaneda-Sceppa C; American College of Sports Medicine; American Heart Association. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation. 2007 Aug 28;116(9):1094-105. doi: 10.1161/CIRCULATIONAHA.107.185650. Epub 2007 Aug 1. — View Citation

Nuckols Rich DT, Sawicki Greg. Ultrasound measurements link soleus muscle dynamics and metabolic cost during human walking with elastic ankle exoskeletons. In Prep.

Onambele GL, Narici MV, Maganaris CN. Calf muscle-tendon properties and postural balance in old age. J Appl Physiol (1985). 2006 Jun;100(6):2048-56. doi: 10.1152/japplphysiol.01442.2005. Epub 2006 Feb 2. — View Citation

Ortega JD, Beck ON, Roby JM, Turney AL, Kram R. Running for exercise mitigates age-related deterioration of walking economy. PLoS One. 2014 Nov 20;9(11):e113471. doi: 10.1371/journal.pone.0113471. eCollection 2014. — View Citation

Ortega JD, Farley CT. Individual limb work does not explain the greater metabolic cost of walking in elderly adults. J Appl Physiol (1985). 2007 Jun;102(6):2266-73. doi: 10.1152/japplphysiol.00583.2006. Epub 2007 Mar 15. — View Citation

Ortega JO, Lindstedt SL, Nelson FE, Jubrias SA, Kushmerick MJ, Conley KE. Muscle force, work and cost: a novel technique to revisit the Fenn effect. J Exp Biol. 2015 Jul;218(Pt 13):2075-82. doi: 10.1242/jeb.114512. Epub 2015 May 11. — View Citation

Panizzolo FA, Green DJ, Lloyd DG, Maiorana AJ, Rubenson J. Soleus fascicle length changes are conserved between young and old adults at their preferred walking speed. Gait Posture. 2013 Sep;38(4):764-9. doi: 10.1016/j.gaitpost.2013.03.021. Epub 2013 May 1. — View Citation

Rall JA. Sense and nonsense about the Fenn effect. Am J Physiol. 1982 Jan;242(1):H1-6. doi: 10.1152/ajpheart.1982.242.1.H1. — View Citation

Rasske K, Thelen DG, Franz JR. Variation in the human Achilles tendon moment arm during walking. Comput Methods Biomech Biomed Engin. 2017 Feb;20(2):201-205. doi: 10.1080/10255842.2016.1213818. Epub 2016 Jul 27. — View Citation

Rubenson J, Pires NJ, Loi HO, Pinniger GJ, Shannon DG. On the ascent: the soleus operating length is conserved to the ascending limb of the force-length curve across gait mechanics in humans. J Exp Biol. 2012 Oct 15;215(Pt 20):3539-51. doi: 10.1242/jeb.070466. Epub 2012 Jul 5. — View Citation

Sawicki GS, Ferris DP. Mechanics and energetics of level walking with powered ankle exoskeletons. J Exp Biol. 2008 May;211(Pt 9):1402-13. doi: 10.1242/jeb.009241. — View Citation

Stanaway FF, Gnjidic D, Blyth FM, Le Couteur DG, Naganathan V, Waite L, Seibel MJ, Handelsman DJ, Sambrook PN, Cumming RG. How fast does the Grim Reaper walk? Receiver operating characteristics curve analysis in healthy men aged 70 and over. BMJ. 2011 Dec 15;343:d7679. doi: 10.1136/bmj.d7679. — View Citation

Stenroth L, Peltonen J, Cronin NJ, Sipila S, Finni T. Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo. J Appl Physiol (1985). 2012 Nov;113(10):1537-44. doi: 10.1152/japplphysiol.00782.2012. Epub 2012 Oct 4. — View Citation

Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, Brach J, Chandler J, Cawthon P, Connor EB, Nevitt M, Visser M, Kritchevsky S, Badinelli S, Harris T, Newman AB, Cauley J, Ferrucci L, Guralnik J. Gait speed and survival in older adults. JAMA. 2011 Jan 5;305(1):50-8. doi: 10.1001/jama.2010.1923. — View Citation

Takahashi KZ, Gross MT, van Werkhoven H, Piazza SJ, Sawicki GS. Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking. Sci Rep. 2016 Jul 15;6:29870. doi: 10.1038/srep29870. — View Citation

Takahashi KZ, Lewek MD, Sawicki GS. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study. J Neuroeng Rehabil. 2015 Feb 25;12:23. doi: 10.1186/s12984-015-0015-7. — View Citation

* Note: There are 37 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Net Metabolic Rate (Watts/kg) The rate of metabolic energy that participants expend during a short walking bout in each of the experimental conditions. 3rd session, up to 2 weeks
See also
  Status Clinical Trial Phase
Completed NCT05433233 - Effects of Lifestyle Walking on Blood Pressure in Older Adults With Hypertension N/A
Recruiting NCT06032065 - Sequential Multiple Assessment Randomized Trial of Exercise for PAD: SMART Exercise for PAD (SMART PAD) Phase 3
Completed NCT05293730 - Trial of the Impact of the Electronic Frailty Integrated With Social Needs N/A
Recruiting NCT03932162 - Gene Expression Changes In Young and Geriatric Skin Early Phase 1
Completed NCT04064528 - Effects of Age on Amino Acid Delivery to Tendon N/A
Completed NCT03366129 - Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
Completed NCT06029920 - Influence of Overground Walking on Biomarkers, Cognitive Function, and Quality of Life in Elderly With Mild Cognitive Impairment N/A
Recruiting NCT05543980 - Leg Heat Therapy in Elderly Individuals Phase 2
Recruiting NCT05566938 - Study to Design a Precision Nutrition Strategy at a Group Level in the Elderly N/A
Completed NCT04894929 - Comprehensive Geriatric Assessment in the Monitoring of Functional Improvement N/A
Not yet recruiting NCT06071130 - Emotion, Aging, and Decision Making N/A
Enrolling by invitation NCT04641663 - Multi-target Dietary Supplement Tolerability in an Aging Population (MTDSST) N/A
Completed NCT04088006 - The Evaluation of Efficacy and Safety of Hyaluronic Acid Injection on Skin Moisturization and Elasticity N/A
Completed NCT03695081 - Patient Pathway Pharmacist - Optimal Drug-related Care N/A
Recruiting NCT05424263 - Acetate and Age-associated Arterial Dysfunction Phase 2
Completed NCT05601713 - Mitigating Heat-induced Physiological Strain and Discomfort in Older Adults Via Lower Limb Immersion and Neck Cooling N/A
Completed NCT04551339 - Zinc Versus Multivitamin Micronutrient Supplementation in the Setting of COVID-19 N/A
Recruiting NCT04997577 - Speech Perception and High Cognitive Demand N/A
Completed NCT05922475 - Efficacy of Pre-sleep or Post-exercise Protein During 12 Weeks of Resistance Exercise Training N/A
Completed NCT04015479 - Peanut Protein Supplementation to Augment Muscle Growth and Improve Markers of Muscle Quality and Health in Older Adults N/A