Acute Respiratory Failure Clinical Trial
— NPS_LowCrsOfficial title:
Neural Pressure Support for Low Pulmonary Compliance
NCT number | NCT05566652 |
Other study ID # | NPS |
Secondary ID | |
Status | Recruiting |
Phase | N/A |
First received | |
Last updated | |
Start date | December 1, 2022 |
Est. completion date | October 31, 2023 |
Verified date | December 2022 |
Source | Policlinico Hospital |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
With this interventional prospective study, we aim at comparing the effectiveness of Neural Pressure Support (NPS) in reducing respiratory work and patient-ventilator asynchronies as compared with standard Pressure Support Ventilation (PSV), in a cohort of patients with Acute Respiratory Failure (ARF) and low respiratory system compliance.
Status | Recruiting |
Enrollment | 10 |
Est. completion date | October 31, 2023 |
Est. primary completion date | May 31, 2023 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Age > 18 years - Admission to Intensive Care Unit (ICU) for ARF - Low compliance of the respiratory system (Crs = 30 ml/cmH2O) - Written informed consent obtained Exclusion Criteria: - Contraindication to nasogastric tube insertion (gastroesophageal surgery in the previous 3 months, gastroesophageal bleeding in the previous 30 days, history of esophageal varices, facial trauma) - Increased risk of bleeding with nasogastric tube insertion, due to severe coagulation disorders and severe thrombocytopenia ( i.e., International Normalized Ratio (INR) > 2 and platelets count < 70.000/mm3) - Severe hemodynamic instability (noradrenaline > 0.3 µg/kg/min and/or use of vasopressin) - Failure to obtain a stable EAdi signal - Central nervous system or neuromuscular disorders - Moribund status |
Country | Name | City | State |
---|---|---|---|
Italy | Fondazione IRCCS Ca'Granda - Ospedale Maggiore Policlinico | Milan |
Lead Sponsor | Collaborator |
---|---|
Policlinico Hospital |
Italy,
Brochard L, Harf A, Lorino H, Lemaire F. Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis. 1989 Feb;139(2):513-21. doi: 10.1164/ajrccm/139.2.513. — View Citation
Dres M, Demoule A. Monitoring diaphragm function in the ICU. Curr Opin Crit Care. 2020 Feb;26(1):18-25. doi: 10.1097/MCC.0000000000000682. — View Citation
Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, Adhikari NKJ, Amato MBP, Branson R, Brower RG, Ferguson ND, Gajic O, Gattinoni L, Hess D, Mancebo J, Meade MO, McAuley DF, Pesenti A, Ranieri VM, Rubenfeld GD, Rubin E, Seckel M, Slutsky AS, Talmor D, Thompson BT, Wunsch H, Uleryk E, Brozek J, Brochard LJ; American Thoracic Society, European Society of Intensive Care Medicine, and Society of Critical Care Medicine. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017 May 1;195(9):1253-1263. doi: 10.1164/rccm.201703-0548ST. Erratum In: Am J Respir Crit Care Med. 2017 Jun 1;195(11):1540. — View Citation
Hess DR. Ventilator waveforms and the physiology of pressure support ventilation. Respir Care. 2005 Feb;50(2):166-86; discussion 183-6. — View Citation
Leung P, Jubran A, Tobin MJ. Comparison of assisted ventilator modes on triggering, patient effort, and dyspnea. Am J Respir Crit Care Med. 1997 Jun;155(6):1940-8. doi: 10.1164/ajrccm.155.6.9196100. — View Citation
Liu L, Xu XT, Yu Y, Sun Q, Yang Y, Qiu HB. Neural control of pressure support ventilation improved patient-ventilator synchrony in patients with different respiratory system mechanical properties: a prospective, crossover trial. Chin Med J (Engl). 2021 Jan 19;134(3):281-291. doi: 10.1097/CM9.0000000000001357. — View Citation
MacIntyre NR. Clinically available new strategies for mechanical ventilatory support. Chest. 1993 Aug;104(2):560-5. doi: 10.1378/chest.104.2.560. No abstract available. — View Citation
Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome. Lancet. 2021 Aug 14;398(10300):622-637. doi: 10.1016/S0140-6736(21)00439-6. Epub 2021 Jul 1. — View Citation
Mirabella L, Cinnella G, Costa R, Cortegiani A, Tullo L, Rauseo M, Conti G, Gregoretti C. Patient-Ventilator Asynchronies: Clinical Implications and Practical Solutions. Respir Care. 2020 Nov;65(11):1751-1766. doi: 10.4187/respcare.07284. Epub 2020 Jul 14. — View Citation
Nava S, Bruschi C, Rubini F, Palo A, Iotti G, Braschi A. Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med. 1995 Nov;21(11):871-9. doi: 10.1007/BF01712327. — View Citation
Pelosi P, Ball L, Barbas CSV, Bellomo R, Burns KEA, Einav S, Gattinoni L, Laffey JG, Marini JJ, Myatra SN, Schultz MJ, Teboul JL, Rocco PRM. Personalized mechanical ventilation in acute respiratory distress syndrome. Crit Care. 2021 Jul 16;25(1):250. doi: 10.1186/s13054-021-03686-3. — View Citation
Sassoon CS, Foster GT. Patient-ventilator asynchrony. Curr Opin Crit Care. 2001 Feb;7(1):28-33. doi: 10.1097/00075198-200102000-00005. — View Citation
Spahija J, de Marchie M, Albert M, Bellemare P, Delisle S, Beck J, Sinderby C. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010 Feb;38(2):518-26. doi: 10.1097/CCM.0b013e3181cb0d7b. — View Citation
Tassaux D, Gainnier M, Battisti A, Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005 Nov 15;172(10):1283-9. doi: 10.1164/rccm.200407-880OC. Epub 2005 Aug 18. — View Citation
Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006 Oct;32(10):1515-22. doi: 10.1007/s00134-006-0301-8. Epub 2006 Aug 1. — View Citation
Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. N Engl J Med. 2017 Aug 10;377(6):562-572. doi: 10.1056/NEJMra1608077. No abstract available. — View Citation
Tobin MJ, Jubran A, Laghi F. Patient-ventilator interaction. Am J Respir Crit Care Med. 2001 Apr;163(5):1059-63. doi: 10.1164/ajrccm.163.5.2005125. No abstract available. — View Citation
Tokioka H, Tanaka T, Ishizu T, Fukushima T, Iwaki T, Nakamura Y, Kosogabe Y. The effect of breath termination criterion on breathing patterns and the work of breathing during pressure support ventilation. Anesth Analg. 2001 Jan;92(1):161-5. doi: 10.1097/00000539-200101000-00031. — View Citation
Vassilakopoulos T, Petrof BJ. Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med. 2004 Feb 1;169(3):336-41. doi: 10.1164/rccm.200304-489CP. No abstract available. — View Citation
Yamada Y, Du HL. Analysis of the mechanisms of expiratory asynchrony in pressure support ventilation: a mathematical approach. J Appl Physiol (1985). 2000 Jun;88(6):2143-50. doi: 10.1152/jappl.2000.88.6.2143. — View Citation
Yoshida T, Fujino Y, Amato MB, Kavanagh BP. Fifty Years of Research in ARDS. Spontaneous Breathing during Mechanical Ventilation. Risks, Mechanisms, and Management. Am J Respir Crit Care Med. 2017 Apr 15;195(8):985-992. doi: 10.1164/rccm.201604-0748CP. — View Citation
* Note: There are 21 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Work Of Breathing (WOB) | We hypothesize that Neural Pressure Support (NPS) is able to improve the patient-ventilator interaction, thus reducing significantly the patient's work of breathing (WOB). WOB will be evaluated by the off-line analysis of the esophageal pressure waveform. | 30 minutes ventilatory traces recording | |
Secondary | Asynchronies | We hypothesize that Neural Pressure Support (NPS) is able to improve the patient-ventilator interaction, thus reducing significantly the asynchronies between patient and ventilator. Asynchronies will be estimated by the Asynchrony Index (AI) calculated off-line by ventilatory waveforms analysis. | 30 minutes ventilatory traces recording |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05144633 -
Blue Protocol and Eko Artificial Intelligence Are Best (BEA-BEST)
|
||
Completed |
NCT04534569 -
Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
|
||
Recruiting |
NCT03021902 -
Nutrition and Exercise in Critical Illness
|
Phase 2 | |
Completed |
NCT02902146 -
Bougie Use in Emergency Airway Management
|
N/A | |
Completed |
NCT02901158 -
Esophageal Manometry in Mechanically Ventilated Patients
|
||
Completed |
NCT02236559 -
High Flow Therapy for the Treatment of Respiratory Failure in the ED
|
N/A | |
Recruiting |
NCT02056093 -
Comparison of Proportional Assist Ventilation And Neurally Adjusted Ventilator Assist
|
N/A | |
Not yet recruiting |
NCT01668368 -
Goal Directed Mechanical Ventilation Aimed at Optimal Lung Compliance
|
N/A | |
Terminated |
NCT01083277 -
Variable Ventilation During Acute Respiratory Failure
|
N/A | |
Completed |
NCT01462279 -
Effect of Thiamine on Oxygen Utilization (VO2) in Critical Illness
|
N/A | |
Completed |
NCT01114022 -
Prevention Inhalation of Bacterial by Using Endotracheal Tube Balloon Polyvinyl Chloride or Polyurethane
|
N/A | |
Active, not recruiting |
NCT01058421 -
Treatment of Critical Illness Polyneuromyopathy
|
Phase 2 | |
Completed |
NCT00252616 -
Timing of Target Enteral Feeding in the Mechanically Ventilated Patient
|
Phase 2/Phase 3 | |
Recruiting |
NCT04098094 -
Outcomes of RV Dysfunction in Acute Exacerbation of Chronic Respiratory Diseases
|
||
Recruiting |
NCT06051292 -
Decremental Esophageal Catheter Filling Volume Titration For Transpulmonary Pressure Measurement
|
N/A | |
Completed |
NCT04601090 -
Survival Rates and Longterm Outcomes After COVID-19
|
||
Recruiting |
NCT05423301 -
Global Physiotherapy in ICU Patients With High Risk Extubation Failure
|
N/A | |
Completed |
NCT02447692 -
Proportional Assist Ventilation for Minimizing the Duration of Mechanical Ventilation: The PROMIZING Study
|
N/A | |
Completed |
NCT04016480 -
HFNC During Bronchoscopy for Bronchoalveolar Lavage
|
N/A | |
Completed |
NCT04507425 -
High Flow Nasal Cannula With Noninvasive Ventilation
|
N/A |