Clinical Trials Logo

Clinical Trial Summary

The execution of diagnostic-therapeutic investigations by bronchial endoscopy can expose the patient to acute respiratory failure (ARF). In particular, the risk of hypoxemia is greater during broncho-alveolar lavage (BAL). For this reason, oxygen therapy is administered at low or high flows during the course of bronchoscopic procedures, in order to avoid hypoxemia. Few clinical studies have demonstrated the efficacy and safety of high flow oxygen through nasal cannula (HFNC) during BAL procedures, and no study has evaluated, during bronchial endoscopy, the effects of HFNC on diaphragmatic effort (assessed with ultrasound) and aeration and ventilation of the different lung regions (assessed with electrical impedance tomography). Therefore, investigators conceived the present randomized controlled study to evaluate possible differences existing during bronchoscopy between oxygen therapy administered with HFNC and conventional (low-flow) oxygen therapy, delivered through nasal cannula.


Clinical Trial Description

Patients with Acute Respiratory Failure may sometimes require a bronchial endoscopy for broncho-alveolar lavage (BAL). During the procedure, hypoxemia may worsen and oxygen may be require to avoid desaturation. In the recent years, High-Flow through Nasal Cannula (HFNC) has been introduced in the clinical practice. HFNC delivers to the patient heated humidified air-oxygen mixture, with an inspiratory fraction of oxygen (FiO2) ranging from 21 to 100% and a flow up to 60 L/min through a large bore nasal cannula. HFNC has some potential advantages. First of all, HFNC provides heated (37°C) and humidified (44 mg/L) air-oxygen admixture to the patient, which avoids injuries to ciliary motion, reduces the inflammatory responses associated to dry and cold gases, epithelial cell cilia damage, and airway water loss, and keeps unmodified the water content of the bronchial secretions. Second, HFNC determines a wash out from carbon dioxide of the pharyngeal dead space. Third, HFNC generates small amount (up to 8 cmH2O) of pharyngeal pressure during expiration, which drops to zero during inspiration. Fourth, HFNC guarantees a more stable FiO2, as compared to conventional oxygen therapy. Whenever the inspiratory peak flow of a patient exceeds the flow provided by a Venturi mask, the patient inhaled also part of atmospheric air. Electrical impedance tomography (EIT) is a noninvasive imaging technique providing instantaneous monitoring of variations in overall lung volume and regional distribution of ventilation, as determined by variations over time in intrathoracic impedance, which is increased by air and reduced by fluids and cells. EIT allows determining changes in end-expiratory lung impedance (EELI), a surrogate estimate of end-expiratory lung volume, assessing global and regional distribution of Vt, and obtaining indexes of spatial distribution of ventilation. Diaphragm ultrasound is a bedside, radiation free technique to assess the contractility of the diaphragm and the respiratory effort. In this study investigators aim to evaluate possible differences existing during bronchoscopy between oxygen therapy administered with HFNC and conventional (low-flow) oxygen therapy, delivered through nasal cannula in terms of respiratory effort (as assessed through diaphragm ultrasound), lung aeration and ventilation distribution (as assessed with EIT) and arterial blood gases. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04016480
Study type Interventional
Source University Magna Graecia
Contact
Status Completed
Phase N/A
Start date September 12, 2019
Completion date February 28, 2020

See also
  Status Clinical Trial Phase
Recruiting NCT05144633 - Blue Protocol and Eko Artificial Intelligence Are Best (BEA-BEST)
Completed NCT04534569 - Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
Recruiting NCT03021902 - Nutrition and Exercise in Critical Illness Phase 2
Completed NCT02902146 - Bougie Use in Emergency Airway Management N/A
Completed NCT02901158 - Esophageal Manometry in Mechanically Ventilated Patients
Completed NCT02236559 - High Flow Therapy for the Treatment of Respiratory Failure in the ED N/A
Recruiting NCT02056093 - Comparison of Proportional Assist Ventilation And Neurally Adjusted Ventilator Assist N/A
Terminated NCT01083277 - Variable Ventilation During Acute Respiratory Failure N/A
Not yet recruiting NCT01668368 - Goal Directed Mechanical Ventilation Aimed at Optimal Lung Compliance N/A
Completed NCT01462279 - Effect of Thiamine on Oxygen Utilization (VO2) in Critical Illness N/A
Completed NCT01114022 - Prevention Inhalation of Bacterial by Using Endotracheal Tube Balloon Polyvinyl Chloride or Polyurethane N/A
Active, not recruiting NCT01058421 - Treatment of Critical Illness Polyneuromyopathy Phase 2
Completed NCT00252616 - Timing of Target Enteral Feeding in the Mechanically Ventilated Patient Phase 2/Phase 3
Recruiting NCT04098094 - Outcomes of RV Dysfunction in Acute Exacerbation of Chronic Respiratory Diseases
Not yet recruiting NCT06051292 - Decremental Esophageal Catheter Filling Volume Titration For Transpulmonary Pressure Measurement N/A
Completed NCT04601090 - Survival Rates and Longterm Outcomes After COVID-19
Completed NCT02447692 - Proportional Assist Ventilation for Minimizing the Duration of Mechanical Ventilation: The PROMIZING Study N/A
Completed NCT04507425 - High Flow Nasal Cannula With Noninvasive Ventilation N/A
Active, not recruiting NCT04079829 - Postoperative Respiratory Abnormalities
Completed NCT04067622 - Novel Arm Restraint For Critically Ill Patients To Reduce Immobility, Sedation, Agitation and Cognitive Impairment N/A