Clinical Trials Logo

Clinical Trial Summary

In patients suffering from acute respiratory failure, ineffective cough and the consequent retention of secretions are common clinical problems, which often lead to the need for tracheostomy for the sole purpose of aspiration of secretions from the airways. Mechanically ventilated critically ill patients often have impaired mucus transport which is associated with secretion retention and subsequent development of pneumonia. The accumulation of tracheobronchial secretions in ventilated patients in ICU is due not only to an increased production, but also to a decreased clearance. In the event that secretions occlude a bronchus, an atelectasis of the lung parenchyma is created downstream. Therefore, it is often necessary to perform a flexible bronchoscopy (FOB) to proceed with the removal of the secretion plug. After its removal, the lung is supposed to be reventilated and recruited. In intubated ICU patients, the application of a recruiting maneuver (RM) is commonly used to reopen the collapsed lung in patients with Acute Respiratory Distress Syndrome or in case of atelectasis in other clinical conditions. However, no studies have so far investigated the role of the application of a RM after a FOB performed to remove a secretion plug in intubated ICU patients. This observational and physiological study aims to assess if the application of a RM would modify the lung aeration soon after an FOB to remove secretion plug (first outcome). Moreover, the study aims to assess if EIT could be an additional bedside imaging tool to monitor modifications of lung ventilation and aeration during and after a flexible bronchoscopy, as compared with both chest-X-ray and lung ultrasound.


Clinical Trial Description

n/a


Study Design


Related Conditions & MeSH terms


NCT number NCT05200494
Study type Interventional
Source University Magna Graecia
Contact Federico Longhini, MD
Phone +393475395967
Email longhini.federico@gmail.com
Status Not yet recruiting
Phase N/A
Start date February 1, 2022
Completion date December 31, 2022

See also
  Status Clinical Trial Phase
Recruiting NCT05144633 - Blue Protocol and Eko Artificial Intelligence Are Best (BEA-BEST)
Completed NCT04534569 - Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
Recruiting NCT03021902 - Nutrition and Exercise in Critical Illness Phase 2
Completed NCT02902146 - Bougie Use in Emergency Airway Management N/A
Completed NCT02901158 - Esophageal Manometry in Mechanically Ventilated Patients
Completed NCT02236559 - High Flow Therapy for the Treatment of Respiratory Failure in the ED N/A
Recruiting NCT02056093 - Comparison of Proportional Assist Ventilation And Neurally Adjusted Ventilator Assist N/A
Terminated NCT01083277 - Variable Ventilation During Acute Respiratory Failure N/A
Not yet recruiting NCT01668368 - Goal Directed Mechanical Ventilation Aimed at Optimal Lung Compliance N/A
Completed NCT01462279 - Effect of Thiamine on Oxygen Utilization (VO2) in Critical Illness N/A
Completed NCT01114022 - Prevention Inhalation of Bacterial by Using Endotracheal Tube Balloon Polyvinyl Chloride or Polyurethane N/A
Active, not recruiting NCT01058421 - Treatment of Critical Illness Polyneuromyopathy Phase 2
Completed NCT00252616 - Timing of Target Enteral Feeding in the Mechanically Ventilated Patient Phase 2/Phase 3
Recruiting NCT04098094 - Outcomes of RV Dysfunction in Acute Exacerbation of Chronic Respiratory Diseases
Recruiting NCT06051292 - Decremental Esophageal Catheter Filling Volume Titration For Transpulmonary Pressure Measurement N/A
Completed NCT04601090 - Survival Rates and Longterm Outcomes After COVID-19
Recruiting NCT05423301 - Global Physiotherapy in ICU Patients With High Risk Extubation Failure N/A
Completed NCT02447692 - Proportional Assist Ventilation for Minimizing the Duration of Mechanical Ventilation: The PROMIZING Study N/A
Completed NCT04016480 - HFNC During Bronchoscopy for Bronchoalveolar Lavage N/A
Completed NCT04507425 - High Flow Nasal Cannula With Noninvasive Ventilation N/A