Acute Respiratory Distress Syndrome Clinical Trial
Official title:
Pulmonary Interstitial Emphysema (Macklin Effect), Quantitative Imaging Analysis and CytoKine Profiling to Predict Lung Frailty IN ARDS
Barotrauma (pneumothorax, pneumomediastinum) is a well-described complication of Acute Respiratory Distress Syndrome (ARDS), especially in patients with coronavirus disease 2019 (COVID-19) (16.1% in COVID-19, and about 6% in non-COVID-19 ARDS). Macklin effect was recently discovered by our group as an accurate radiological predictor of barotrauma in COVID-19 ARDS; the Investigators also found that density histograms automatically extracted from chest CT images provide a reliable insight into lung composition . Since lung frailty is a major issue also in non-COVID-19 ARDS, the Investigators want to confirm the predictive role of Macklin effect also in this setting. In addition, the Investigators aim to explore inflammatory profiling to decipher different biological aspects of the same clinical issue. Finally, the Investigators want to develop a specific management algorithm for patients diagnosed, according to our findings, with a specific ARDS sub phenotype characterized by increased lung frailty
Barotrauma occurs frequently in acute respiratory distress syndrome (ARDS), and has a difficult, non-standardized management. Unfortunately, mortality rates remain high (> 60% in COVID-19 ARDS, around 46% in non-COVID-19 ARDS). Interestingly, data from COVID-19 patients suggested that barotrauma may occur also in spontaneously breathing patients with ARDS. Accordingly, frailty of lung parenchyma represents a major issue in ARDS. Protective mechanical ventilation (i.e. ventilation with low tidal volume and low airway pressures) remains a cornerstone of supportive management of ARDS. Unfortunately, mechanical ventilation may worsen pulmonary damage (ventilator-induced lung injury) and, in high-risk patients, may induce barotrauma even when ventilator settings are maintained within the "safe" limit of protective ARDS. Early identification of high-risk features could therefore allow clinicians to individualize management of high-risk patients, by tailoring respiratory support and potentially select candidates for advanced support (i.e. extracorporeal membrane oxygenation) before development of overt barotrauma. Macklin effect is a well-described radiological sign originally intended to differentiate between "peripheral" (distal airway rupture, "respiratory" barotrauma) and "central" (lesion to large airways/esophaegal injury) causes of air leakage in the mediastinum. However, the Investigators recently identified Macklin effect as a strong radiological predictor of barotrauma development in mechanically ventilated COVID-19 ARDS patients (sensitivity: 89.2%; specificity: 95.6%). In our cohort, radiologically-detected Macklin effect was identified 8-12 days before development of pneumomediastinum/pneumothorax. These preliminary results have been confirmed in a subsequent multicenter study (sample size 697 patients; sensitivity: 100%; specificity: 99.8%). Furthermore, preliminary data suggest that early application of awake veno/venous extracorporeal membrane oxygenation (ECMO) before invasive mechanical ventilation in COVID-19 patients with severe ARDS and at high-risk for barotrauma (defined as presence of Macklin effect on chest CT imaging) might result in no barotrauma events with a low intubation rate. Concurrently, a hyper inflammatory sub phenotype has been associated with overall worse outcome both in terms of mortality and ventilator-free days in ARDS. Moreover, the occurrence of lung injury during mechanical ventilation has been proven to be significantly related to the recruitment of mast cells via CXCL10/CXCR3 signaling . In this view, confirmation of Macklin effect predictive role and identification of further, novel laboratory biomarkers could provide instruments for early risk stratification in ARDS patients. Taken together, i) quantitative imaging analysis and ii) systemic inflammatory profiling could decipher different biological aspects of the same clinical issue, possibly laying foundation for the definition of a multimodality signature of lung frailty in ARDS patients.. Accordingly, the driving hypotheses of this retrospective/prospective study is that identification of a novel ARDS sub phenotype characterized, irrespective of the underlying etiology, by increased lung frailty could substantially improve the poor prognosis routinely associated with this condition, possibly being a landmark for personalized management strategies. To further validate the role of Macklin effect, the Investigators will: - evaluate the accuracy of Macklin effect in a retrospective cohort of 350 ARDS patients (COVID-19 and non-COVID-19) - identify, throughout densitometry, machine learning and artificial intelligence-based approaches, novel imaging biomarkers characteristics of higher lung frailty in the same cohort. In the main prospective study, the Investigators will: - analyse the following biomarkers in the serum and bronchoalveolar lavage fluid of 100 ARDS patients prospectively enrolled: Interleukin-8 (IL-8), Interleukin (IL)-6, IL-1Ra, IL-18, interferon (IFN ), Angiopoietin-2 (Ang-2), Tumour Necrosis Factor receptor-1 (TNFr1), Plasminogen Activator Inhibitor-1(PAI-1), Receptor for Advanced Glycation Endproducts (RAGE), Intercellular adhesion molecule-1 (ICAM-1), Surfactant Protein D (SPD), protein C, Von Willebrand Factor (VWF), CXCL10/CXCR3, and metalloproteases (MMP9, MMP10). - Develop a specific management algorithm for ARDS patients at high risk for barotrauma by collecting clinical and outcome data from 10 ARDS patients receiving unconventional management (e.g. awake ECMO, ultraprotective ventilation, etc) ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04384445 -
Zofin (Organicell Flow) for Patients With COVID-19
|
Phase 1/Phase 2 | |
Recruiting |
NCT05535543 -
Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
|
||
Completed |
NCT04695392 -
Restore Resilience in Critically Ill Children
|
N/A | |
Terminated |
NCT04972318 -
Two Different Ventilatory Strategies in Acute Respiratory Distress Syndrome Due to Community-acquired Pneumonia
|
N/A | |
Completed |
NCT04534569 -
Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
|
||
Completed |
NCT04078984 -
Driving Pressure as a Predictor of Mechanical Ventilation Weaning Time on Post-ARDS Patients in Pressure Support Ventilation.
|
||
Completed |
NCT04451291 -
Study of Decidual Stromal Cells to Treat COVID-19 Respiratory Failure
|
N/A | |
Not yet recruiting |
NCT06254313 -
The Role of Cxcr4Hi neutrOPhils in InflueNza
|
||
Not yet recruiting |
NCT04798716 -
The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus Pneumonia Caused by COVID-19
|
Phase 1/Phase 2 | |
Withdrawn |
NCT04909879 -
Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome
|
Phase 2 | |
Terminated |
NCT02867228 -
Noninvasive Estimation of Work of Breathing
|
N/A | |
Not yet recruiting |
NCT02881385 -
Effects on Respiratory Patterns and Patient-ventilator Synchrony Using Pressure Support Ventilation
|
N/A | |
Completed |
NCT02545621 -
A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
|
||
Completed |
NCT02232841 -
Electrical Impedance Imaging of Patients on Mechanical Ventilation
|
N/A | |
Withdrawn |
NCT02253667 -
Palliative Use of High-flow Oxygen Nasal Cannula in End-of-life Lung Disease Patients
|
N/A | |
Completed |
NCT02889770 -
Dead Space Monitoring With Volumetric Capnography in ARDS Patients
|
N/A | |
Completed |
NCT01504893 -
Very Low Tidal Volume vs Conventional Ventilatory Strategy for One-lung Ventilation in Thoracic Anesthesia
|
N/A | |
Withdrawn |
NCT01927237 -
Pulmonary Vascular Effects of Respiratory Rate & Carbon Dioxide
|
N/A | |
Completed |
NCT02814994 -
Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients
|
N/A | |
Completed |
NCT01680783 -
Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure
|
N/A |