Clinical Trials Logo

Clinical Trial Summary

Acute respiratory distress syndrome (ARDS) is the common disease in clinical, which pathophysiology is a lot of alveolar collapse and heterogeneity. Recruitment maneuver is one of the important therapy for improvement of this phenomenon. The previous research focuses on the hemodynamic and oxygenation effect of recruitment maneuver on the lung of ARDS. Seldom investigators try to find the intuitive change of heterogeneity when recruitment maneuver is implemented. In this study, the investigators compare three recruitment maneuvers on the lung heterogeneity of ARDS.


Clinical Trial Description

Acute respiratory distress syndrome (ARDS) is the common disease in clinical,which pathophysiology is a lot of alveolar collapse and heterogeneity. Recruitment maneuver is one of the important therapy for improvement of this phenomenon. The previous research focuses on the hemodynamic and oxygenation effect of recruitment maneuver on the lung of ARDS. Seldom investigators try to find the intuitive change of heterogeneity when recruitment maneuver is implemented. In this study, the investigators compare three recruitment maneuvers on the lung heterogeneity of ARDS.

Electrical impedance tomography (EIT) has been introduced as a true bedside and radiation-free technique which provides information on heterogeneity. The investigators compare effects of three recruitment maneuvers on lung heterogeneity before recruitment maneuver and do the same thing after three recruitment maneuvers.

Ninety-three patients with ARDS will be enrolled . These patients are treated routinly.They need to recept a time of ZEEP (PEEP is zero cmH2O)for ten respiratory cycles before RM(recruitment maneuvers).Implemente a kind of RM at random immediately after ZEEP,Then make the ventilator same as before ZEEP.The EIT images ,blood gases and hemodynamic variables will be examined as beseline between ZEEP and RM.Completion of this kind of RM lies that the P/F of blood gases 3 minutes after RM achieves (1) PO2/FiO2>400mmHg or (2)PO2/FiO2+PCO2 ≥ 400mmHg(FiO2=1),(3)the difference between this index before lung recriument and after lung recriument PO2/FiO2<5%.In addition,3 minutes after RM,compare the indexs above between three methods. ;


Study Design

Allocation: Randomized, Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms

  • Acute Lung Injury
  • Acute Respiratory Distress Syndrome
  • Respiratory Distress Syndrome, Adult
  • Respiratory Distress Syndrome, Newborn
  • Syndrome

NCT number NCT02387437
Study type Interventional
Source Southeast University, China
Contact
Status Recruiting
Phase N/A
Start date November 2014
Completion date January 2016

See also
  Status Clinical Trial Phase
Completed NCT04384445 - Zofin (Organicell Flow) for Patients With COVID-19 Phase 1/Phase 2
Recruiting NCT05535543 - Change in the Phase III Slope of the Volumetric Capnography by Prone Positioning in Acute Respiratory Distress Syndrome
Completed NCT04695392 - Restore Resilience in Critically Ill Children N/A
Terminated NCT04972318 - Two Different Ventilatory Strategies in Acute Respiratory Distress Syndrome Due to Community-acquired Pneumonia N/A
Completed NCT04534569 - Expert Panel Statement for the Respiratory Management of COVID-19 Related Acute Respiratory Failure (C-ARF)
Completed NCT04078984 - Driving Pressure as a Predictor of Mechanical Ventilation Weaning Time on Post-ARDS Patients in Pressure Support Ventilation.
Completed NCT04451291 - Study of Decidual Stromal Cells to Treat COVID-19 Respiratory Failure N/A
Not yet recruiting NCT06254313 - The Role of Cxcr4Hi neutrOPhils in InflueNza
Not yet recruiting NCT04798716 - The Use of Exosomes for the Treatment of Acute Respiratory Distress Syndrome or Novel Coronavirus Pneumonia Caused by COVID-19 Phase 1/Phase 2
Withdrawn NCT04909879 - Study of Allogeneic Adipose-Derived Mesenchymal Stem Cells for Non-COVID-19 Acute Respiratory Distress Syndrome Phase 2
Not yet recruiting NCT02881385 - Effects on Respiratory Patterns and Patient-ventilator Synchrony Using Pressure Support Ventilation N/A
Terminated NCT02867228 - Noninvasive Estimation of Work of Breathing N/A
Completed NCT02545621 - A Role for RAGE/TXNIP/Inflammasome Axis in Alveolar Macrophage Activation During ARDS (RIAMA): a Proof-of-concept Clinical Study
Completed NCT02232841 - Electrical Impedance Imaging of Patients on Mechanical Ventilation N/A
Withdrawn NCT02253667 - Palliative Use of High-flow Oxygen Nasal Cannula in End-of-life Lung Disease Patients N/A
Completed NCT01504893 - Very Low Tidal Volume vs Conventional Ventilatory Strategy for One-lung Ventilation in Thoracic Anesthesia N/A
Withdrawn NCT01927237 - Pulmonary Vascular Effects of Respiratory Rate & Carbon Dioxide N/A
Completed NCT02889770 - Dead Space Monitoring With Volumetric Capnography in ARDS Patients N/A
Completed NCT01680783 - Non-Invasive Ventilation Via a Helmet Device for Patients Respiratory Failure N/A
Completed NCT02814994 - Respiratory System Compliance Guided VT in Moderate to Severe ARDS Patients N/A