View clinical trials related to Acute Lung Injury.
Filter by:Acute Respiratory Distress Syndrome (ARDS) is a life-threatening condition characterized by acute respiratory failure with hypoxemia, noncardiogenic or non-fluid overload pulmonary edema, bilateral diffuse opacities on chest radiograph in the presence of a predisposing factor. In ARDS there is activation of the inflammatory cascade which is very intense and persistent in the severe types. It was highlighted that the inflammatory cytokines in patients with ARDS or sepsis is similar to that observed in COVID-19 positive patients. Emerging therapies include immunomodulation and the administration of mesenchymal stem cells for the modulation of lung repair through the release of cytokines and growth factors that modulate the local inflammatory response. Regardless of the cause of ARDS, the severity of the inflammatory state and fibroproliferative evolution have been shown to be independent predictors of survival and ventilator dependence. Patients suffering from severe forms of ARDS in fact require prolonged mechanical ventilation, which exposes them to ventilator-associated pneumonia (VAP) and the onset of multiorgan insufficiency. The hyperinflammatory state underlying ARDS predisposes to pulmonary fibroproliferation, which in turn increases susceptibility to ventilator dependence and increases the risk of MOF and death. For this reason, the rationale in the use of anakinra is to limit the inflammatory process of ARDS as early as possible, avoiding the progression of lung damage.
Sepsis-induced acute respiratory distress syndrome (ARDS) is a life-threatening acute inflammatory lung injury, associated with increased pulmonary microvascular permeability, increased lung weight, and loss of aerated lung tissue.Despite advances in critical care, no established and targeted treatment for ARDS, contributing to a persistently high mortality rate of 34% to 45%. Therefore, exploring novel therapeutic targets for septic ARDS is of paramount importance.Acetaldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that serves as the primary toxic aldehyde scavenger and is expressed in various cells, including neutrophils. The ALDH2 rs671 single nucleotide polymorphism, leading to an approximate 90% decrease in ALDH2 enzymatic activity, is implicated in occurrence of macrovascular conditions, such as coronary artery disease, pulmonary arterial hypertension, and aortic aneurysm or dissection.An array of studies has delved into role of ALDH2 in regulating cellular processes, including inflammation, autophagy, apoptosis, necrosis,efferocytosis and pyroptosis.but whether it associated with the incidence of septic-ARDS remains unknown.The aim of this study was to determine whether the ALDH2 rs671 single nucleotide polymorphism was associated with the incidence of septic-ARDS.
Hope to realize the recovery condition of ARDS survivors in Taiwan. It would be helpful not only to design the proper rehabilitation program but also to be a useful reference for the poor recovery patients to take hospice care if indicated.
Predicting fluid responsiveness is primordial when caring for patients with circulatory shock as it allows correction of preload-dependent low cardiac output states, while preserving patients of the deleterious effects of excessive fluid resuscitation. Patients with severe acute respiratory distress syndrome (ARDS) treated with prone positioning (PP) are a specific subset of patients, as 1) they frequently present with shock; 2) excessive fluid administration may lead to respiratory worsening due to increased hydrostatic oedema with potential subsequent worse clinical outcome; and 3) all available dynamic tests evaluating fluid responsiveness can only be performed in patients in the supine condition (which in the case of severe ARDS patients in PP occurs only for 8h over 24h). These elements warrant the development of specific tests allowing the clinician to predict fluid responsiveness with enough exactitude when caring for these patients. We hypothesize that there exists diagnostic heterogeneity in the predictive performance of 4 clinical tests to identify fluid responsiveness in ARDS patients in PP. For the matter of this study, these 4 tests are the Trendelenburg maneuver, the end-expiratory occlusion test, the end-expiratory occlusion test associated with the end-inspiratory occlusion test, and the tidal volume challenge. The diagnostic reference of the study will be the relative change in cardiac index measured by transpulmonary thermodilution before and after a 500 ml fluid bolus, and will allow the adjudication of patients as being fluid responsive or not. The primary objective of the study is to determine the area under the ROC curve of each of the 4 tests, with their respective 95% confidence interval. All enrolled patients will perform the 4 tests following a cross-over design and in a randomized sequence, separated by 1-min wash-out periods with return to hemodynamic baseline values, and concluded with the 500-ml fluid bolus. Patients will only participate once. The expected duration of study participation is 30 minutes maximum.
Acute respiratory distress syndrome (ARDS) is a diffuse inflammation of the lungs that occurs in a variety of diseases. According to the Berlin definition, ARDS is characterized by diffuse lung damage in patients with predisposing factors. Understanding the physiology of ARDS has led to improved ventilatory management, which must be protective to ensure adequate oxygenation and CO2 clearance. Prone position (PP) is a technique that can reduce mortality in patients with severe ARDS. PP results in a more homogeneous distribution of pulmonary stress and strain, helping to protect the lung against ventilator-induced lung injury (VILI). It also increases the PaO2/FiO2 (P/F) ratio, improves the pulmonary ventilation-perfusion ratio, decreases PaCO2 and promotes ventilation of the dorsal lung regions. This technique should be offered to all patients with severe ARDS for 16 consecutive hours, to improve survival and weaning success from mechanical ventilation. However, PP has adverse effects. A meta-analysis showed an increased risk of pressure sores, possibly linked to generalized acute inflammation associated with significant cytokine discharge and diffuse lesions of the vascular endothelium. PP also increased the risk of obstruction and displacement of the endotracheal tube. Final positioning in PP, (i.e., the position imposed on the patient for the duration of the PP session) varies from one ICU to another, and is rarely described in scientific articles. There are two main variants: 1. prone , with arms alongside the body 2. prone, swimmer's position The aim of our study is to show that the "swimmer" PP reduces the occurrence of stage 3 or higher pressure sores, compared with the "arms alongside the body" PP (standard care) at Day 28 post inclusion.
This study aims to examine the value of nebulized heparin for prevention of acute lung injury in adult patients suffering smoke inhalation injury. Patients will be randomized to receive nebulized heparin or an equal volume of normal saline for 14 days and the incidence of acute lung injury will be compared in either group.
The goal of this clinical trial is to explore the safety, tolerability, and efficacy in study intervention, MatriPlax, in subjects with Acute Respiratory Distress Syndrome (ARDS). MatriPlax contains placenta choriodecidual membrane-derived Mesenchymal Stem Cells (pcMSCs). Participants will receive two doses of MatriPlax on Day 1 and Day 4 and conduct efficacy and safety evaluations until 12 months after treatment or withdrawal from the study.
To evaluate the validity of lung ultrasound compared to CT chest and chest radiograph for diagnosis of ARDS and prediction of successful weaning from mechanical ventilation in those patients compared to traditional methods.
Excessive respiratory effort may cause self-inflicted lung injury (SILI) and inspiratory muscle injuries , stimulate desynchronization between the patient and ventilator , and worsen the perfusion of extrapulmonary organs . Appropriate respiratory drive and effort should be maintained during the treatment of patients with respiratory failure . In contrast, respiratory drive and effort are commonly increased in patients with COVID-19 pneumonia , and this phenomenon may persist in critically ill patients with COVID-19, even after receiving venovenous ECMO (vv-ECMO) support, owing to low pulmonary compliance and a high systemic inflammatory state . To reduce respiratory effort and drive, ICU physicians often administer high doses of sedative drugs, analgesics, and muscle relaxants. The prolonged use of high doses of these drugs can cause loss of the spontaneous cough reflex, which in turn impairs sputum drainage and eventually worsens pulmonary consolidation and lung infections. As the partial pressure of carbon dioxide in arterial blood (PaCO2) could affect the respiratory drive from the respiratory center (1), it has been shown that altering different levels of extracorporeal carbon dioxide removal in patients undergoing ECMO recovering from acute respiratory distress syndrome (ARDS) could alter respiratory drive. We hope to find a more appropriate target for maintaining PaCO2 to control respiratory effort in patients with COVID-19 undergoing ECMO.
The primary objective of this study is to evaluate the effects of a 15-week home telerehabilitation program and a detraining period on cardiorespiratory fitness and muscular efficiency in patients with post-COVID-19 sequelae compared to a control group of COVID-19 patients. We hypothesize that cardiorespiratory fitness and muscular efficiency significantly improve in patients who carry out the home telerehabilitation program. However, the cardiorespiratory and muscular adaptations achieved and tolerance to exercise are lost over time as an effect of detraining.