Clinical Trials Logo

Acute Lung Injury clinical trials

View clinical trials related to Acute Lung Injury.

Filter by:
  • Active, not recruiting  
  • Page 1 ·  Next »

NCT ID: NCT06337877 Active, not recruiting - Clinical trials for Sedation Complication

Assessment of Sedation Depth in ARDS Patients Undergoing Therapeutic Paralysis

Start date: October 1, 2023
Phase:
Study type: Observational

"In intensive care units, therapeutic paralysis has been a routine treatment method for many years in a select group of patients. Sufficient and appropriate sedation in patients undergoing therapeutic paralysis is crucial to prevent awareness and reduce the risk of excessive sedation. Both inadequate and excessive sedation levels can be highly detrimental to the patient. Clinical assessment may not always provide accurate information regarding sedation depth. Recently, the frequency and workload of therapeutic paralysis treatment in intensive care units have increased due to COVID-19 pneumonia. Therefore, the investigators believe that inadequate sedation may be common in these patients. Processed electroencephalogram parameters such as bispectral index or patient state index (PSI), routinely used in operating rooms and intensive care units, are commonly used to indicate sedation depth. In this study, the investigators aimed to determine sedation levels in patients during paralysis, assess the prevalence of inadequate or excessive sedation, and observe the doses of sedatives and analgesics used."

NCT ID: NCT06272942 Active, not recruiting - Clinical trials for Acute Respiratory Distress Syndrome (ARDS)

An Observational Study to Identify New Health Problems Arising After an Intensive Care Unit Admission in People With Acute Respiratory Distress Syndrome in the United States

SeeMe Tool
Start date: January 31, 2024
Phase:
Study type: Observational

This is an observational study in which data already collected from people with acute respiratory distress syndrome (ARDS) admitted to an intensive care unit (ICU) are studied. ARDS is a life-threatening condition in which fluid builds up in the lungs making breathing difficult. In observational studies, only observations are made without participants receiving any advice or any changes to health care. People who are admitted to ICU for serious illnesses, like ARDS, often experience new health problems during and after their ICU stays. These health problems that may include physical, mental, and/or emotional disorders, are called post-intensive care syndrome (PICS). Identifying these new health problems early can help people by timely treatments and care. In this study, researchers want to identify any health problems that arise after ICU admission in people with ARDS in the United States (US). To do this, researchers will collect information on health problems, treatments, medicines, and healthcare visits in people with ARDS, 1 year before and after an ICU admission. They will then look to see whether the health problems are in areas that have been described as the post intensive care syndrome (PICS). In addition, they will measure healthcare related costs in the one year after admission and compare it to the one year prior to admission. Researchers will also compare this information with data collected for people with pneumonia who did not require ICU admission. This will help them to identify any new health problems arising due to ICU stays. The data will come from participants' medical claims information stored in the Optum Clinformatics Data Mart database from 2016 to 2022. The claims data will only be collected for people in the US. Researchers will collect data from participants admitted to ICU for ARDS for a maximum of 1 year before and after their stay.

NCT ID: NCT05650957 Active, not recruiting - COVID-19 Clinical Trials

PRactice of VENTilation in Patients With ARDS Due to COVID-19 vs Pneumonia

PRoVENT-COP
Start date: August 1, 2022
Phase:
Study type: Observational

This study aims to compare epidemiology, management of invasive ventilation and outcomes in critically ill patients with COVID-19 ARDS and ARDS from another pulmonary infection. The investigators will use individual patient data from four recently published large observational COVID-9 studies, including the 'Practice of VENTilation in COVID-19 patients' (PRoVENT-COVID) study, the 'Epidemiology of COVID-19 patients in the ICU' (EPICCoV) study, the 'SATI-COVID-19 - Clinical Characteristics and Outcomes of Patients With COVID-19 on Mechanical Ventilation in Argentina: a Prospective, Multicenter Cohort Study' and the CIBERESUCICOVID - Personalized Risk and Prognosis Factors and Follow-up at One Year of the Patients Hospitalized in the Spanish Intensive Care Units Infected with COVID -19' study. The investigators will use the individual patient data from ARDS patients with another pulmonary infection from the 'LUNG -SAFE - Large Observational Study to UNderstand the Global Impact of Severe Acute Respiratory FailurE' study and the 'ERICC - Epidemiology of Respiratory Insufficiency in Critical Care' study.

NCT ID: NCT05450120 Active, not recruiting - Clinical trials for COVID-19 Acute Respiratory Distress Syndrome

Rehabilitation of Critically Ill Patients With SARS-CoV-2 Variants in ICU With Limited Resources

Start date: May 1, 2020
Phase: N/A
Study type: Interventional

Acute rehabilitation in critically ill patients can improve post-intensive care unit (post-ICU) physical function. Scientific evidence has considered neuromuscular electrical stimulation (NMES) as a promising approach for the early rehabilitation of patients during and/or after ICU. Neuromuscular electrostimulation can be an alternative form of muscle exercise that helps to gain strength in critically ill patients with COVID -19, due to the severe weakness that patients experience due to longer MV, analgesia and NMB duration. Thus, the general objective of evaluating the effects of an early rehabilitation protocol on the strength and functionality of patients affected by SARS-CoV-2 variants and specifically compare the effectiveness of NMES associated with the functional rehabilitation protocol(FR). Also, describe demographics, clinical status, ICU therapies, mortality estimates and Hospital outcomes, of every patients admitted in ICU during the observation periods.

NCT ID: NCT05327205 Active, not recruiting - Clinical trials for COVID-19 Acute Respiratory Distress Syndrome

Chest and Abdominal Compression Versus PROne Position

CA_C_PRO
Start date: April 8, 2022
Phase:
Study type: Observational

Acute respiratory distress syndrome (ARDS) is a severe pulmonary insult responsible for major, life-threatening hypoxemia. The alteration of hematosis is secondary to alveolar edema, following damage to the alveolocapillary barrier in response to a systemic inflammatory process. The presence of fluid effusion within the alveolar sacs and the modification of type II pneumocyte activity due to the presence of numerous pro-inflammatory mediators will lead to a quantitative and qualitative alteration of the surfactant. At the same time, leukocyte infiltration will lead to an alteration of the support tissue and to the accumulation of cellular debris. All these elements will lead to a heterogeneous loss of aeration of the lung. In addition, the alveolar units are compressed by the entire lung parenchyma due to the effect of gravity on the edematous tissue. The treatment of ARDS is based on the antagonistic need to maintain hematosis and reduce parenchymal insult secondary to mechanical ventilation. Optimization of mechanical ventilation consists in reducing the volume of gas administered at each respiratory cycle and in limiting thoracic parietal stress by the use of curares. More recently, the interest of the ventral decubitus position has been demonstrated. During such a maneuver, the posterior pulmonary parenchymatous zones, usually subjected to gravity in the supine position, will be able to re-expand under the effect of the prone position and of the positive pressure induced by the ventilator. The increase in parietal elastance, due to the compression of the thorax between the posterior part of the trunk and the bed, also contributes to an improvement in the distribution of inhaled gases within the pulmonary parenchyma by limiting the loss of energy, transmitted directly to the wall. The ventral decubitus position allows to redistribute the ventilation in territories which were not aired before but which participate to the respiratory exchanges because they are still perfused and thus to improve the pulmonary compliance measured. Although described as an atypical form, SARS-CoV-2 infection can lead to ARDS with severe forms of viral pneumonia and thus require prone positioning. While this results in improved oxygenation and compliance, prone positioning is accompanied by a risk of complications such as pressure sores, described as the most frequent. In addition, the massive influx of patients and more generally the lack of personnel during pandemic peaks has made the application of prone position sometimes complex because it requires human resources. As a result, the benefit/risk ratio of the maneuver is difficult to determine because not all patients respond in the same way to prone positioning. It appeared essential to be able to predict the expected benefit of the prone position before performing the procubitus maneuver. The application of thoracic and abdominal pressures, as part of the respiratory management of patients, is a technique commonly used by physiotherapists. Investigators have demonstrated a similar change in measured lung parenchymal compliance during manual compression of a patient's chest and during prone positioning. In the context of the epidemic, investigators used this test systematically to determine which patients were most likely to benefit from prone positioning and for whom the available resources should be concentrated at any given time.

NCT ID: NCT05193526 Active, not recruiting - Clinical trials for Acute Respiratory Distress Syndrome Related to SARS-CoV-2

COronaVirus Induced Acute Respiratory Disease Syndrome During PREGnancy

COVADIS-PREG
Start date: November 15, 2021
Phase:
Study type: Observational

Few data are available on the management of critically ill pregnant women with pneumonia related to SARS-CoV-2. In the absence of clear recommendations for the management of delivery, clinicians are faced with the risk of pregnancy continuation against the risk of premature birth. In these multicenter retrospective study, the investigators want to describe clinicians attitude on delivery management in pregnant women requiring invasive mechanical ventilation for acute respiratory distress syndrome related to SARS-CoV-2. Two strategies will be compared on maternal, obstetric and neonatal outcomes: - Wait strategy defined by no extraction within 24 hours of invasive venting - Early strategy defined by extraction within 24 hours of invasive ventin

NCT ID: NCT05035524 Active, not recruiting - Covid19 Clinical Trials

A Randomized Controlled Trial to Investigate The Role of Adjuvant Inhalable Sodium Bicarbonate Solution 8.4% in Treatment of COVID-19

Start date: September 1, 2021
Phase: N/A
Study type: Interventional

The aim of the study is to investigate the role of SB 8.4% as adjuvant therapy in the treatment of COVID- 19 patients proved to be RT-PCR positive (mild, moderate and severe).

NCT ID: NCT04987528 Active, not recruiting - Clinical trials for Acute Respiratory Distress Syndrome

Pulmonary Fibrosis During Severe COVID-19 Pneumonia

FIBRO-COVID
Start date: March 11, 2020
Phase:
Study type: Observational

The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), an emerging coronavirus, which has already infected 192 million people with a case fatality rate close to 2%. About 5% of patients infected with SARS CoV-2 have a critical form with organ failure. Among critical patients admitted to intensive care, about 70% of them will require ventilatory assistance by invasive mechanical ventilation (MV) with a mortality rate of 35% and a median MV duration of 12 days. The most severe lung damage resulting from SARS CoV-2 infection is the acute respiratory distress syndrome (ARDS). The virus infects alveolar epithelial cells and capillary endothelial cells leading to an activation of endothelium, hypercoagulability and thrombosis of pulmonary capillaries. This results in abnormal ventilation / perfusion ratios and profound hypoxemia. To date, the therapeutic management of severe SARS CoV-2 pneumonia lay on the early use of corticosteroids and Interleukin-6 (IL-6) receptor antagonist, which both reduce the need of MV and mortality. The risk factors of death in Intensive Care Unit (ICU) are: advanced age, severe obesity, coronary heart disease, active cancer, severe hypoxemia, and hepatic and renal failure on admission. Among MV patients, the death rate is doubled in those with both reduced thoracopulmonary compliance and elevated D-dimer levels. Patients with severe alveolar damage are at risk of progressing towards irreversible pulmonary fibrosis, the incidence of which still remain unknown. The diagnosis of pulmonary fibrosis is based on histology but there are some non-invasive alternative methods (serum or bronchoalveolar biomarkers, chest CT scan). We aim to assess the incidence of pulmonary fibrosis in patients with severe SARS CoV-2 related pneumonia. We will investigate the prognostic impact of fibrosis on mortality and the number of days alive free from MV at Day 90. Finally, we aim to identify risk factors of fibrosis.

NCT ID: NCT04708340 Active, not recruiting - COVID-19 Clinical Trials

Tolerability and Efficacy of RJX in Patients With COVID-19

RJX
Start date: March 25, 2021
Phase: Phase 1/Phase 2
Study type: Interventional

This study is designed as a 2-part, 2-cohort, double-blind, randomized, placebo controlled, multicenter Phase 1/2 study to evaluate the safety, tolerability and efficacy of RJX in patients with COVID-19.

NCT ID: NCT04669444 Active, not recruiting - Critical Illness Clinical Trials

Biomarkers, Genomics, Physiology in Critically Ill and ECMO Patients

IGNITE
Start date: April 14, 2020
Phase: N/A
Study type: Interventional

Patients in end-stage cardiac failure and/or respiratory failure may be started on a rescue therapy known as Extracorporeal Membrane Oxygenation (ECMO). One of the major clinical questions is how to manage the ventilator when patients are on ECMO therapy. Ventilator Induced Lung Injury (VILI) can result from aggressive ventilation of the lung during critical illness. VILI and lung injury such as Acute Respiratory Distress Syndrome (ARDS) can further increase the total body inflammation and stress, this is known as biotrauma. Biotrauma is one of the mechanisms that causes multi-organ failure in critically ill patients. One advantage of ECMO is the ability to greatly reduce the use of the ventilator and thus VILI by taking control of the patient's oxygenation and acid-base status. By minimizing VILI during ECMO we can reduce biotrauma and thus multi-organ failure. Since the optimal ventilator settings for ECMO patients are not known, we plan to study the impact of different ventilator settings during ECMO on patient's physiology and biomarkers of inflammation and injury.