Clinical Trials Logo

Acute Lung Injury clinical trials

View clinical trials related to Acute Lung Injury.

Filter by:

NCT ID: NCT04376905 Completed - COVID-19 Clinical Trials

Extra Vascular Lung Water and Pulmonary Permeability in Critically Ill Patients With SARS-CoV-2 (COVID-19)

PiCCOVID
Start date: April 1, 2020
Phase:
Study type: Observational

Acute respiratory distress syndrome (ARDS) is a syndromic definition of an acute lung injury with alteration of biomechanics (lower respiratory system compliance) mostly associated with increased lesional edema. Increase in Pulmonary Vascular Permeability Index (PVPI) accompanied with accumulation of excess Extravascular Lung Water (EVLW) is the hallmark of ARDS. In routine clinical practice, the investigators measure the EVLW and PVPI in ARDS patients, as suggested by expert's recommendations, using a transpulmonary thermodilution (TPTD) technique. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly recognized illness that has spread rapidly throughout Wuhan (Hubei province) to other provinces in China and around the world. Most critically ill patients with SARS-CoV-2 will present the criteria for the definition of ARDS. However, many of these patients have a particular form of ARDS with severe hypoxemia often associated with near normal respiratory system compliance. This combination is almost never seen in severe ARDS. Thus other mechanisms (including probably vascular mechanisms), that are still poorly described, have to be involved in SARS-CoV-2. EVLW and PVPI have never been assessed in SARS-CoV-2 mechanically ventilated patients. The aim of this study is to evaluate these two parameters in order to best characterize and understand the mechanisms related to SARS-CoV-2. Based on observation of several cases in intensive care units (ICU), the investigators hypothesize that there are following different SARS-CoV-2 patterns: 1. Nearly normal compliance, low lung recruitability, normal EVLW and low PVPI. 2. Low compliance due to increased edema, high lung recruitability, high EVLW and high PVPI.

NCT ID: NCT04373200 Completed - Clinical trials for Acute Respiratory Distress Syndrome

Human Ab Response & immunoMONItoring of COVID-19 Patients

HARMONICOV
Start date: May 25, 2020
Phase: N/A
Study type: Interventional

Prospective, mono centric study on COVID-19 patients with or without acute respiratory distress syndrome (ARDS) to analyse the dynamics of the immune response and to search for biomarkers of evolution

NCT ID: NCT04371016 Completed - Clinical trials for Acute Respiratory Distress Syndrome

Pulmonary and Ventilatory Effects of Bed Verticalization in Patients With Acute Respiratory Distress Syndrome

ERECTION
Start date: March 30, 2020
Phase: N/A
Study type: Interventional

Acute respiratory distress syndrome (ARDS) is defined using the clinical criteria of bilateral pulmonary opacities on a chest radiograph, arterial hypoxemia (partial pressure of arterial oxygen [PaO2] to fraction of inspired oxygen [FiO2] ratio ≤ 300 mmHg with positive end-expiratory pressure [PEEP] ≥ 5 cmH2O) within one week of a clinical insult or new or worsening respiratory symptoms, and the exclusion of cardiac failure as the primary cause. ARDS is a fatal condition for intensive care unit (ICU) patients with a mortality between 30 and 40%, and a frequently under-recognized challenge for clinicians. Patients with severe symptoms may retain sequelae that have recently been reported in the literature. These sequelae may include chronic respiratory failure, disabling neuro-muscular disorders, and post-traumatic stress disorder identical to that observed in soldiers returning from war. The management of a patient with ARDS requires first of all an optimization of oxygenation, which relies primarily on mechanical ventilation, whether invasive or non-invasive (for less severe patients). Since the ARDS network study published in 2000 in the New England Journal of Medicine, it has been internationally accepted that tidal volumes must be reduced in order to limit the risk of alveolar over-distension and ventilator-induced lung injury (VILI). A tidal volume of approximately 6 mL.kg-1 ideal body weight (IBW) should be applied. Routine neuromuscular blockade of the most severe patients (PaO2/FiO2 < 120 mmHg) is usually the rule, although it is increasingly being questioned. Comprehensive ventilatory management is based on the concepts of baby lung and open lung, introduced respectively by Gattinoni and Lachmann. According to these concepts, it must be considered that the lung volume available for mechanical ventilation is very small compared to the healthy lung for a given patient (baby lung) and that the reduction in tidal volume must be associated with the use of sufficient PEEP and alveolar recruitment maneuvers to keep the lung "open" and limit the formation of atelectasis. In addition to this optimization of mechanical ventilation, it is possible to reduce the impact of mechanical stress on the lung. The prone position, for example, makes it possible to free from certain visceral and mediastinal constraints, to optimize the distribution of ventilation as well as the ventilation to perfusion ratios. Thanks to the technological progress of intensive care beds, it is now possible to verticalize ventilated and sedated patients in complete safety. Verticalization could reduce the constraints imposed to the lungs, by reproducing the more physiological vertical station, and thus modifying the distribution of ventilation. Indeed, in two physiological studies published in 2006 and 2013 in Intensive Care Medicine, 30 to 40% of patients with ARDS appeared to respond to partial body verticalization at 45° and 60° (in a semi-seated or seated position). In addition to improving arterial oxygenation, verticalization appeared to decrease ventilatory stress, related to supine position, and increase alveolar recruitment, with improved lung compliance and end-expiratory lung volume (EELV) over time. Nevertheless, 90° verticalization has never been studied, nor have positions without body flexion (seated or semi-seated). In these studies, only patients with the highest lung compliance appeared to respond. These data support the current hypothesis of subgroups of patients with ARDS with different pathophysiological characteristics (morphological and phenotypic) and therapeutic responses. The investigators hypothesize that verticalization of patients with ARDS improves ventilatory mechanics by reducing the constraints imposed on the lung (transpulmonary pressure), pulmonary aeration, arterial oxygenation and ventilatory parameters. The first objective is to study the influence of the bed position of the patient with early ARDS on the variations in respiratory mechanics represented by the transpulmonary driving pressure (ΔPtp). The second objective is to evaluate changes in ventilatory physiology, tolerance and feasibility of verticalization in patients with early ARDS.

NCT ID: NCT04370249 Completed - COVID-19 Clinical Trials

Construction of a Composite Clinical-echo Score Predictive of a Risk of Short-term Aggravation of Respiratory Impairment in Patients Suspected of Covid-19

VIRUS
Start date: April 9, 2020
Phase:
Study type: Observational

With the influx of patients suspected of Covid-19 and the limited number of hospital beds, there is a need for sensitive triage to detect patients at risk of pulmonary complications and therefore requiring hospitalization, but also specific triage to safely discharge patients without risk factors or signs of clinical or ultrasound severity. The use of pulmonary ultrasound in addition to clinical assessment seems appropriate. Indeed, it allows early detection of signs of pneumopathy which, in the current context, most often correspond to Covid-19. These signs include B-lines, which indicate interstitial pulmonary oedema, and an anfractuous and thickened pleural line, or even centimetric parenchymal condensations with a low level of pleural effusion. Conversely, the presence of a medium to large pleural effusion is not very suggestive of the diagnosis of Covid-19. In addition, a lung ultrasound score has been developed and validated to assess the severity of acute respiratory distress and predict the occurrence of acute respiratory distress syndrome. It is based on the performance of a 12-point (6 per hemi-thorax) pulmonary ultrasound with the collection of the presence of B-lines, condensation or pleural effusion. In the hands of a trained operator, this examination takes only a few minutes. The aim of the study is to develop a score based on clinical and ultrasound evidence to allow early and safer referral than that based on clinical evidence alone. To do this, the study will retrospectively collect clinical and lung ultrasound data from departments that use this technique on a daily basis.

NCT ID: NCT04369105 Completed - Clinical trials for Acute Respiratory Distress Syndrome

Prono Position and Mechanical Power

PROMP
Start date: May 1, 2020
Phase:
Study type: Observational

The primary objective of the study is to compare the mechanical power applied to the respiratory system in patient with acute respiratory distress syndrome in supine positioning and after the implementation of prone positioning while mantaining the same ventilatory setting. The secondary objetive of the study is to compare the mechanical power applied to the respiratory system in patient with acute respiratory distress syndrome in supine positioning and after the implementation of prone positioning and adjusting an individualized ventilatory setting.

NCT ID: NCT04359251 Completed - COVID-19 Clinical Trials

Different PEEP Settings of COVID-19 Induced ARDS

Start date: March 5, 2020
Phase: N/A
Study type: Interventional

This was a multi-center prospective study. All consecutive severe cases of COVID-19 whose PO2/FiO2<300mmHg with invasive ventilation admitted to 5 fixed-point receive COVID-19 patients hospitals in Wuhan from 5 March to 15 March 2020 were included. Epidemiological, clinical data, lung mechanics, artery blood gas test and hemodynamics at three methods to titrate PEEP, optimizing oxygenation, optimizing compliance, ARDSnet. The study was approved by the Ethics Committee of Zhongda Hsopital, Southeast University.

NCT ID: NCT04358939 Completed - COVID-19 Clinical Trials

Prone Position in Patients on High-flow Nasal Oxygen Therapy for COVID-19 (HIGH-PRONE-COVID-19)

Start date: April 27, 2020
Phase: N/A
Study type: Interventional

Acute Respiratory Distress Syndrome (ARDS) induces high mortality, particularly in the context of COVID-19 disease. Preliminary data from patients with ARDS related to COVID-19 disease appear to show significant effectiveness of prone positioning in intubated patients in terms of oxygenation as well as nasal high flow therapy before intubation. It should be noted that in Jiangsu province, secondarily affected, nasal high flow combined with the prone position was successfully integrated into care protocols. The investigators hypothesize that the combined application of nasal high flow and prone positioning can significantly improve the outcome of patients suffering from COVID-19 pneumonia by reducing the need for tracheal intubation and associated therapeutics such as sedation and paralysis, resulting in both individual and collective benefits in terms of use of scarce critical care resources. Investigators hypothesize that the combined application of nasal high-flow and prone positioning can significantly improve the outcome of patients suffering from COVID-19 pneumonia by reducing the need for intubation and associated therapeutics such as sedation and paralysis, resulting in both individual and collective benefits in terms of use of scarce critical care resources.

NCT ID: NCT04357730 Completed - Clinical trials for Acute Respiratory Distress Syndrome

Fibrinolytic Therapy to Treat ARDS in the Setting of COVID-19 Infection

Start date: May 14, 2020
Phase: Phase 2
Study type: Interventional

The global pandemic COVID-19 has overwhelmed the medical capacity to accommodate a large surge of patients with acute respiratory distress syndrome (ARDS). In the United States, the number of cases of COVID-19 ARDS is projected to exceed the number of available ventilators. Reports from China and Italy indicate that 22-64% of critically ill COVID-19 patients with ARDS will die. ARDS currently has no evidence-based treatments other than low tidal ventilation to limit mechanical stress on the lung and prone positioning. A new therapeutic approach capable of rapidly treating and attenuating ARDS secondary to COVID-19 is urgently needed. The dominant pathologic feature of viral-induced ARDS is fibrin accumulation in the microvasculature and airspaces. Substantial preclinical work suggests antifibrinolytic therapy attenuates infection provoked ARDS. In 2001, a phase I trial 7 demonstrated the urokinase and streptokinase were effective in patients with terminal ARDS, markedly improving oxygen delivery and reducing an expected mortality in that specific patient cohort from 100% to 70%. A more contemporary approach to thrombolytic therapy is tissue plasminogen activator (tPA) due to its higher efficacy of clot lysis with comparable bleeding risk 8. We therefore propose a phase IIa clinical trial with two intravenous (IV) tPA treatment arms and a control arm to test the efficacy and safety of IV tPA in improving respiratory function and oxygenation, and consequently, successful extubation, duration of mechanical ventilation and survival.

NCT ID: NCT04357444 Completed - COVID 19 Clinical Trials

Low Dose of IL-2 In Acute Respiratory DistrEss Syndrome Related to COVID-19

LILIADE-COVID
Start date: October 23, 2020
Phase: Phase 2
Study type: Interventional

The purpose is to demonstrate the efficacy of low-dose interleukin 2 (Ld-IL2) administration in improving clinical course and oxygenation parameters in patients with SARS-CoV2-related ARDS.

NCT ID: NCT04355728 Completed - COVID-19 Clinical Trials

Use of UC-MSCs for COVID-19 Patients

Start date: April 25, 2020
Phase: Phase 1/Phase 2
Study type: Interventional

The purpose of this research study is to learn about the safety and efficacy of human umbilical cord derived Mesenchymal Stem Cells (UC-MSC) for treatment of COVID-19 Patients with Severe Complications of Acute Lung Injury/Acute Respiratory Distress Syndrome (ALI/ARDS).