View clinical trials related to Acute Lung Injury.
Filter by:The main objective of our study is to determine whether asymptomatic influenza virus carriage is associated with an increased risk of post-operative Acute Respiratory Distress Syndrome (ARDS) after cardiac surgery. Cardiac surgery patients are particularly at risk of developing ARDS with an estimated incidence of 5-10% based on the most recent data.
In this study, the investigators are attempting to evaluate the influence of socio-economic factors on the functional recovery (physical and psychological) of patients who developed ARDS after a COVID-19 infection, with the aim of offering personalized medical and social follow-up and support measures in order to avoid medium- and long-term complications, which can result in handicaps, reduced quality of life, and a higher risk of death.
Children supported by Extra-Corporeal Membrane Oxygenation (ECMO) present a high risk of neurological complications and cerebral autoregulation (CA) impairment may be a risk factor. The first objective is to investigate the association between CA impairments and neurological outcome assessed by the onset of an ANE. The secondary objective is to study the underlying mechanisms influencing CA.
In mechanically ventilated patients, driving pressure (ΔP) assess the strain applied to the respiratory system and is related to ICU mortality. The aim of this randomized cross-over trial was to compare ΔP selected by a closed-loop system and by physician tailored mechanical ventilation mode. Pediatric patients admitted to PICU will be enrolled if they were invasively ventilated without any detectable respiratory effort, hemodynamic instability, or significant leakages. Two 60 minute periods of ventilation determined by randomization in APV-CMV and ASV 1.1 will be compared. Settings were adjusted to reach the same minute ventilation in both modes. ΔP will be calculated as the difference between plateau pressure and total PEEP measured using end-inspiratory and end-expiratory occlusion maneuvers, respectively.
This is a pilot, multi-centre, open-label randomised controlled study to assess the early efficacy of intravenous (IV) administration of CYP-001 in adults admitted to an intensive care unit (ICU) with respiratory failure
The investigators aim to achieve experts consensus on respiratory interventions in management of COVID-19 related acute respiratory failure (C-ARF).
This clinical trial will enroll participants that have pneumonia caused by the COVID-19 virus. During the study patients will receive 7 to up to 14 days of defibrotide. After completing the treatment, participants will have 30 day follow-up check-up to assess for adverse events and clinical status. This final assessment can be done virtually, by telephone or electronically (email) if the patient cannot be contacted by phone. No in-person visit is required. The hypothesis of this trial is that defibrotide therapy given to patients with severe SARS-CoV2 ARDS will be safe and associated with improved overall survival, within 28 days of therapy initiation.
In patients with SARS-CoV-2 or bacterial infection admitted to the intensive care unit (ICU), the state of the intravascular volume, the characteristics of the blood volume components, and the development of a vascular leak is currently unknown. The relationship of these parameters with parameters of cardiac performance, lung edema and sublingual microcirculatory perfusion parameters have never been studied.
Rationale: The renin-angiotensin-aldosterone system (RAAS) dysregulation may play a central role in the pathophysiology of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection associated acute lung injury (ALI) / acute respiratory distress syndrome (ARDS). In the RAAS, Angiotensin I (Ang I) is converted to angiotensin II (Ang II) by angiotensin converting enzyme (ACE). Ang II mediates vasoconstrictive, pro-inflammatory and pro-oxidative effects through agonism at Ang II type 1 receptor (AT1R). ACE2 converts Ang II to angiotensin 1-7 (Ang1-7), which finally binds to Mas receptor (MasR) and mediates many beneficial actions, including vasodilation and anti-inflammatory, anti-oxidant and antiapoptotic effects. ACE2, a homologue of ACE, is an integral cell membrane protein with a catalytic domain on the extracellular surface exposed to vasoactive peptides. SARS-CoV-2 penetrates the cell through ACE2, and the increase of this receptor (due to the use of ACE inhibitors or angiotensin receptor blockers [ARBs]) may facilitate SARS-CoV-2 infection, which might increase the risk of developing severe and fatal SARS-CoV-2 infection. However, through upregulation of ACE2, ACE inhibitors/ARBs can exert anti-inflammatory and antioxidative effects, which may be beneficial in preventing ALI and ARDS. Objective: To evaluate the effectiveness and safety of telmisartan in respiratory failure due to COVID-19. Study design: This is an open label, phase 2 clinical trial. Study population: Adult hospitalized SARS-CoV-2-infected patients (n=60). Intervention: The active-treatment arm will receive telmisartan 40 mg daily and the control arm will receive standard care. Treatment duration will be 14 days or up to hospital discharge <14 days or occurrence of the primary endpoint if <14 days. Main study endpoint: The primary study endpoint is the occurrence within 14 days of randomization of either: 1) Mechanical ventilation or 2) Death.
The purpose of this study is to evaluate the efficacy of vadadustat for the prevention and treatment of acute respiratory distress syndrome (ARDS) in hospitalized patients with Coronavirus Disease 2019 (COVID-19).