Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to evaluate prospectively the impact of two protective mechanical ventilation strategies, both using low-tidal volume ventilation (6 mL/kg/ibw) after cardiac surgery. The study will select patients presenting signals of deficient gas exchange (PaO2/FIO2 < 250 at a PEEP of 5 cmH2O) in the immediate post-operative period. An aggressive alveolar recruitment protocol applying opening pressures of 45 cmH2O, followed by ventilation with PEEP = 13 cmH2O, will be compared to the standard alveolar recruitment protocol of the institution, where an opening pressure of 20 cmH2O in the airways is followed by ventilation with PEEP = 8 cmH2O. After a stabilizing period of four hours of controlled mechanical ventilation, the patients will follow the routine weaning protocol and physiotherapy protocol of the institution.


Clinical Trial Description

The postoperative period of cardiac surgery is associated with the development of pulmonary complications. Functional residual capacity can be reduced up to 50% and pulmonary volumes may be decreased until three months after surgery.

Lung injury is the result of pulmonary inflammation (activated by cardiopulmonary bypass, the surgical procedure itself and ischemia-reperfusion injury), the adopted mechanical ventilation strategy and a consequence of previous cardiac and/or pulmonary dysfunction.

The use of protective mechanical ventilation strategies with low tidal volumes since the immediate postoperative period, or since the operating room, has been shown to attenuate and prevent lung injury in previous studies selecting with high-risk patients.

A more complex topic, however, has been the proof of the additional benefit of alveolar recruitment maneuvers during the brief period of mechanical ventilation after surgery. While the experimental evidence suggests that the use of an open lung approach could minimize the shearing forces in the lung parenchyma, enhancing the protection afforded by low tidal volume ventilation, innumerous concerns about the hemodynamic side effects, and the possibility of barotrauma have prevented the routine use of intensive alveolar recruitment protocols. Another matter of concern is the net efficacy of a recruitment maneuver applied in the post-operative period, instead of the intra-operative period.

Thus, this study will compare the impact of two protective mechanical ventilation strategies, both using low-tidal volume ventilation (6 mL/kg/ibw) after cardiac surgery, in a selective population of patients presenting signals of deficient gas exchange (PaO2/FIO2 < 250 at a PEEP of 5 cmH2O) in the immediate post-operative period. In a previous study at this institution, this subgroup of patients was shown to be at higher risks of postoperative pulmonary complications.

During the short period of controlled mechanical ventilation after the patient arrival from the operating theater, an aggressive alveolar recruitment protocol applying opening pressures of 45 cmH2O, followed by ventilation with PEEP = 13 cmH2O, will be compared to the standard alveolar recruitment protocol of the institution, where an opening pressure of 30 cmH2O in the airways is followed by ventilation with PEEP = 8 cmH2O. After an stabilizing period of four hours of controlled mechanical ventilation, the patients will follow the routine weaning protocol and physiotherapy protocol of the institution.

Our hypothesis is that the aggressive alveolar recruitment strategy might help in the reversal of collapse created during the surgery and short term mechanical ventilation during anesthesia and patient transportation. Previous studies have shown that this effect may extend to the post-extubation period, impairing lung function for a few days.

Thus, we will test if the effect of an aggressive alveolar recruitment protocol will be translated in a better lung compliance, better gas exchange, and fewer pulmonary complications in the post-operative periods (this latter is going to be our primary outcome). Analysis of the length of stay will be also scrutinized, consisting in our secondary outcome. All hemodynamic complications will be reported, since we can also anticipate that events of hemodynamic impairment may be more frequent in the aggressive recruitment arm, eventually obscuring the expected benefits . ;


Study Design

Allocation: Randomized, Endpoint Classification: Efficacy Study, Intervention Model: Parallel Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT01502332
Study type Interventional
Source University of Sao Paulo
Contact
Status Recruiting
Phase N/A
Start date December 2011
Completion date December 2013

See also
  Status Clinical Trial Phase
Recruiting NCT05490303 - HeartGuide: Preliminary Study N/A
Completed NCT05070819 - Atrial Natriuretic Peptide in Assessing Fluid Status N/A
Not yet recruiting NCT04511403 - Prevalence of Oral Mucosal Alterations In a Sample of Egyptian Patients With Cardiovascular Diseases: A Hospital- Based Cross-Sectional Study
Not yet recruiting NCT04538469 - Absent Visitors: The Wider Implications of COVID-19 on Non-COVID Cardiothoracic ICU Patients, Relatives and Staff
Completed NCT02697760 - The CZT Dynamic Myocardial Perfusion Imaging
Terminated NCT05157568 - Pilot Randomized Clinical Trial of Live-streamed Cardiovascular Rehabilitation N/A
Not yet recruiting NCT04160845 - Non-invasive Forehead Skin Temperature in Cardiac Surgery
Completed NCT04500912 - Comparison of the Supraflex Cruz 60 Micron Versus the Ultimaster Tansei 80 Micron in HBR PCI Population N/A
Recruiting NCT06154473 - Assessment of Patients Undergoing Cardiac Surgery and Admitted to the Intensive Care Unit
Not yet recruiting NCT05877755 - Validation of Multi-contrast, High-resolution Cardiac Magnetic Resonance Imaging N/A
Completed NCT03394859 - Electronic Medical Records and Genomics (eMERGE) Phase III
Recruiting NCT05055830 - Opportunistic PK/PD Trial in Critically Ill Children (OPTIC)
Recruiting NCT04374799 - Heparin vs Placebo for Cardiac Catheterization Phase 3
Completed NCT03174106 - Longterm Follow-up of Cardiac Patients With an Smartphone-Application N/A
Recruiting NCT05531253 - Respired Gases in Patients Post Cardiac Surgery
Recruiting NCT04609228 - Cardiac Surgery Outcomes in Blood-transfusion Acceptors and no Acceptors
Recruiting NCT06149143 - Cardiac Performance System Data Collection Study - Minnesota
Recruiting NCT05725655 - Hot Water Immersion After Myocardial Infarction N/A
Recruiting NCT06073509 - Atrial Fibrillation and Other Cardiac Arrhythmias and Diseases After Radiotherapy for Breast Cancer : Watch Your HeaRT
Enrolling by invitation NCT04886934 - Temporary Epicardial Pace Wire With Integrated Sensor for Continuous Postoperative Monitoring of Myocardial Function N/A