Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT03458169
Other study ID # CliniqueRR-05
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date January 1, 2018
Est. completion date April 30, 2018

Study information

Verified date March 2018
Source Clinique Romande de Readaptation
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

People with central nervous system disorders such as spinal cord injury, stroke, cerebral palsy, Parkinson's disease, multiple sclerosis, etc… often have impaired lower extremity function that limits activities of daily life and independence. Different body-weight support systems have been developed to facilitate the rehabilitation process by compensating for the user's residual abilities. However, studies on weight-supported gait training on a treadmill have failed to show superiority over conventional rehabilitation programs for spinal cord injury and stroke. A recent study by the group around Grégoire Courtine showed that body-weight support systems that provide assistance only in the vertical direction disrupt the production of gait and balance, suggesting that current practices may even be detrimental for relearning to walk. For the past year, the Clinique Romande de Réadaptation (CRR) worked together with the G-Lab at EPFL and G-Therapeutics on a new robot platform specifically developed to provide adjustable trunk support along four independent degrees of freedom (LEAP). The investigators were able to draw on their long-term experience, which consists of different body weight support training systems for stroke and spinal cord injury. This knowledge, combined with the input of our therapists and physicians and the specific requirements for people with neurological/musculoskeletal disorders, has resulted in a design that can provide adjustable bodyweight support during over-ground locomotion, treadmill, stairs training, standing up and sitting down and for support during the training of activities of daily living.

The scope of this study is to examine how well the robot can be used for rehabilitation therapy in everyday clinical practice. This includes, among other things, technical aspects such as the handling of the hardware, the adaptability of the robot to the patient, and the safety during operation (such as the fall prevention). Various patient-specific aspects will also be evaluated e.g. comfort, positioning, or motivation of the patient. This study also aims to evaluate the software with the various support modes, operating options, and the user interface of the LEAP.


Recruitment information / eligibility

Status Completed
Enrollment 43
Est. completion date April 30, 2018
Est. primary completion date April 30, 2018
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 5 Years to 80 Years
Eligibility Healthy participants fulfilling all of the following inclusion criteria are eligible for the study:

- The healthy volunteer or legal representative has been informed and has signed the informed consent form

- Age 18-80 or age 5-10 (women or men)

- Weight below 137 kg

- Height between 120 and 190 cm

- Agree to comply in good faith with all conditions of the study and to attend all required training

Patients fulfilling all of the following inclusion criteria are eligible for the study:

- The patient has been informed and has signed the informed consent form

- Age 18-80 (women or men)

- Weight below 137 kg

- Height between 120 and 190 cm

- Neurological/musculoskeletal diagnoses

- Impairment of the lower extremities

- Stable medical and physical condition as considered by the attending doctor or physician

- Agree to comply in good faith with all conditions of the study and to attend all required training

- Other (non-neurological) diagnoses, who require intense training of the lower extremities

- The rehabilitation physician or doctor provides a final agreement whether the participant can train with the LEAP

The presence of any one of the following exclusion criteria will lead to exclusion of the participant, for example:

- Strong adipositas, which makes it not possible to adjust the harness to the anthropometrics of the participant

- Bracing of the spinal column.

- Severe joint contractures disabling or restricting lower limb movements

- Instabilities of bones or joints, fractures or osteoporosis/osteopenia

- Allergy against material of harness

- Open skin lesions

- Luxations or subluxations of joints that should be positioned in LEAP

- Strong pain

- Strong spontaneous movements like ataxia, dyskinesia, myoclonus*

- Instable vital functions like pulmonal or cardiovascular conditions

- Uncooperative or aggressive behaviour

- Severe cognitive deficits

- Inability to signal pain or discomfort

- Apraxia*

- Severe spasticity (Ashworth 4)

- Severe epilepsy*

- Insufficient head stability

- Infections requiring isolation of the patient

- History of significant autonomic dysreflexia

- Systemic malignant disorders

- Cardiovascular disorders restricting physical training

- Peripheral nerve disorders

- Other anatomic or co-morbid conditions that, in the investigator's opinion, could limit the patient's ability to participate in the study or to comply with follow-up requirements, or impact the scientific soundness of the study results.

- Known or suspected non-compliance, drug or alcohol abuse,

- Inability to follow the procedures of the study, e.g. due to language problems, psychological disorders, dementia, etc. of the participant,

- Participation in another study with investigational drug within the 30 days preceding and during the present study

- Previous enrolment into the current study Contraindications marked with an * are relative contraindications. Final approval needs to be obtained from the attending medical doctor.

Study Design


Related Conditions & MeSH terms


Intervention

Device:
Therapist LEAP session feedback
A standard therapy session is being performed with a participant with the LEAP body-weight support robot. Subsequently, the therapist is answering a questionnaire to assess the clinical applicability of the robot. An observer will assess with a questionnaire whether use errors occurred during the session.
Participant LEAP session feedback
A standard therapy session is being performed with a participant inside the LEAP body-weight support robot. Subsequently, the participant is answering a questionnaire to assess the comfort of the robot.
LEAP risk control validation
The therapist rates the risk control measurements of the LEAP robot with a questionnaire, during a session with a member of the investigational team.

Locations

Country Name City State
Switzerland Clinique Romande de Réadaptation (CRR), SUVAcare Sion Valais

Sponsors (1)

Lead Sponsor Collaborator
Clinique Romande de Readaptation

Country where clinical trial is conducted

Switzerland, 

References & Publications (40)

Ada L, Dean CM, Hall JM, Bampton J, Crompton S. A treadmill and overground walking program improves walking in persons residing in the community after stroke: a placebo-controlled, randomized trial. Arch Phys Med Rehabil. 2003 Oct;84(10):1486-91. — View Citation

Awai L, Bolliger M, Ferguson AR, Courtine G, Curt A. Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury. Neurorehabil Neural Repair. 2016 Jul;30(6):562-72. doi: 10.1177/1545968315600524. Epub 2015 Oct 1. — View Citation

Burgess JK, Weibel GC, Brown DA. Overground walking speed changes when subjected to body weight support conditions for nonimpaired and post stroke individuals. J Neuroeng Rehabil. 2010 Feb 11;7:6. doi: 10.1186/1743-0003-7-6. — View Citation

Combs SA, Dugan EL, Ozimek EN, Curtis AB. Effects of body-weight supported treadmill training on kinetic symmetry in persons with chronic stroke. Clin Biomech (Bristol, Avon). 2012 Nov;27(9):887-92. doi: 10.1016/j.clinbiomech.2012.06.011. Epub 2012 Jul 17. — View Citation

Combs-Miller SA, Kalpathi Parameswaran A, Colburn D, Ertel T, Harmeyer A, Tucker L, Schmid AA. Body weight-supported treadmill training vs. overground walking training for persons with chronic stroke: a pilot randomized controlled trial. Clin Rehabil. 2014 Sep;28(9):873-84. doi: 10.1177/0269215514520773. Epub 2014 Feb 11. — View Citation

Crompton S, Khemlani M, Batty J, Ada L, Dean C, Katrak P. Practical issues in retraining walking in severely disabled patients using treadmill and harness support systems. Aust J Physiother. 2001;47(3):211-3. — View Citation

Dobkin B, Barbeau H, Deforge D, Ditunno J, Elashoff R, Apple D, Basso M, Behrman A, Harkema S, Saulino M, Scott M; Spinal Cord Injury Locomotor Trial Group. The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor Trial. Neurorehabil Neural Repair. 2007 Jan-Feb;21(1):25-35. — View Citation

Dominici N, Keller U, Vallery H, Friedli L, van den Brand R, Starkey ML, Musienko P, Riener R, Courtine G. Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nat Med. 2012 Jul;18(7):1142-7. doi: 10.1038/nm.2845. — View Citation

Dragunas AC, Gordon KE. Body weight support impacts lateral stability during treadmill walking. J Biomech. 2016 Sep 6;49(13):2662-2668. doi: 10.1016/j.jbiomech.2016.05.026. Epub 2016 Jun 1. — View Citation

Fehr L, Langbein WE, Skaar SB. Adequacy of power wheelchair control interfaces for persons with severe disabilities: a clinical survey. J Rehabil Res Dev. 2000 May-Jun;37(3):353-60. — View Citation

Franceschini M, Carda S, Agosti M, Antenucci R, Malgrati D, Cisari C; Gruppo Italiano Studio Allevio Carico Ictus. Walking after stroke: what does treadmill training with body weight support add to overground gait training in patients early after stroke?: a single-blind, randomized, controlled trial. Stroke. 2009 Sep;40(9):3079-85. doi: 10.1161/STROKEAHA.109.555540. Epub 2009 Jun 25. — View Citation

Freund P, Weiskopf N, Ward NS, Hutton C, Gall A, Ciccarelli O, Craggs M, Friston K, Thompson AJ. Disability, atrophy and cortical reorganization following spinal cord injury. Brain. 2011 Jun;134(Pt 6):1610-22. doi: 10.1093/brain/awr093. Epub 2011 May 17. — View Citation

Ganesan M, Sathyaprabha TN, Gupta A, Pal PK. Effect of partial weight-supported treadmill gait training on balance in patients with Parkinson disease. PM R. 2014 Jan;6(1):22-33. doi: 10.1016/j.pmrj.2013.08.604. Epub 2013 Sep 8. — View Citation

Høyer E, Jahnsen R, Stanghelle JK, Strand LI. Body weight supported treadmill training versus traditional training in patients dependent on walking assistance after stroke: a randomized controlled trial. Disabil Rehabil. 2012;34(3):210-9. doi: 10.3109/09638288.2011.593681. — View Citation

Hunt PC, Boninger ML, Cooper RA, Zafonte RD, Fitzgerald SG, Schmeler MR. Demographic and socioeconomic factors associated with disparity in wheelchair customizability among people with traumatic spinal cord injury. Arch Phys Med Rehabil. 2004 Nov;85(11):1859-64. — View Citation

Kennedy P, Rogers BA. Anxiety and depression after spinal cord injury: a longitudinal analysis. Arch Phys Med Rehabil. 2000 Jul;81(7):932-7. — View Citation

Kosak MC, Reding MJ. Comparison of partial body weight-supported treadmill gait training versus aggressive bracing assisted walking post stroke. Neurorehabil Neural Repair. 2000;14(1):13-9. — View Citation

Lamontagne A, Fung J. Faster is better: implications for speed-intensive gait training after stroke. Stroke. 2004 Nov;35(11):2543-8. Epub 2004 Oct 7. — View Citation

Lewek MD. The influence of body weight support on ankle mechanics during treadmill walking. J Biomech. 2011 Jan 4;44(1):128-33. doi: 10.1016/j.jbiomech.2010.08.037. Epub 2010 Sep 19. — View Citation

Mackay-Lyons M, McDonald A, Matheson J, Eskes G, Klus MA. Dual effects of body-weight supported treadmill training on cardiovascular fitness and walking ability early after stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2013 Sep;27(7):644-53. doi: 10.1177/1545968313484809. Epub 2013 Apr 18. — View Citation

Meyns P, Van de Crommert HW, Rijken H, van Kuppevelt DH, Duysens J. Locomotor training with body weight support in SCI: EMG improvement is more optimally expressed at a low testing speed. Spinal Cord. 2014 Dec;52(12):887-93. doi: 10.1038/sc.2014.172. Epub 2014 Oct 14. — View Citation

Mignardot JB, Le Goff CG, van den Brand R, Capogrosso M, Fumeaux N, Vallery H, Anil S, Lanini J, Fodor I, Eberle G, Ijspeert A, Schurch B, Curt A, Carda S, Bloch J, von Zitzewitz J, Courtine G. A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury. Sci Transl Med. 2017 Jul 19;9(399). pii: eaah3621. doi: 10.1126/scitranslmed.aah3621. — View Citation

Miyai I, Fujimoto Y, Yamamoto H, Ueda Y, Saito T, Nozaki S, Kang J. Long-term effect of body weight-supported treadmill training in Parkinson's disease: a randomized controlled trial. Arch Phys Med Rehabil. 2002 Oct;83(10):1370-3. — View Citation

Nilsson L, Carlsson J, Danielsson A, Fugl-Meyer A, Hellström K, Kristensen L, Sjölund B, Sunnerhagen KS, Grimby G. Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil. 2001 Oct;15(5):515-27. — View Citation

Pennycott A, Vallery H, Wyss D, Spindler M, Dewarrat A, Riener R. A novel body weight support system extension: initial concept and simulation study. IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650489. doi: 10.1109/ICORR.2013.6650489. — View Citation

Sousa CO, Barela JA, Prado-Medeiros CL, Salvini TF, Barela AM. The use of body weight support on ground level: an alternative strategy for gait training of individuals with stroke. J Neuroeng Rehabil. 2009 Dec 1;6:43. doi: 10.1186/1743-0003-6-43. — View Citation

Straube DD, Holleran CL, Kinnaird CR, Leddy AL, Hennessy PW, Hornby TG. Effects of dynamic stepping training on nonlocomotor tasks in individuals poststroke. Phys Ther. 2014 Jul;94(7):921-33. doi: 10.2522/ptj.20130544. Epub 2014 Mar 13. — View Citation

Sullivan KJ, Brown DA, Klassen T, Mulroy S, Ge T, Azen SP, Winstein CJ; Physical Therapy Clinical Research Network (PTClinResNet). Effects of task-specific locomotor and strength training in adults who were ambulatory after stroke: results of the STEPS randomized clinical trial. Phys Ther. 2007 Dec;87(12):1580-602. Epub 2007 Sep 25. — View Citation

Swinnen E, Baeyens JP, Pintens S, Van Nieuwenhoven J, Ilsbroukx S, Buyl R, Ron C, Goossens M, Meeusen R, Kerckhofs E. Trunk kinematics during walking in persons with multiple sclerosis: the influence of body weight support. NeuroRehabilitation. 2014;34(4):731-40. doi: 10.3233/NRE-141089. — View Citation

Swinnen E, Baeyens JP, Pintens S, Van Nieuwenhoven J, Ilsbroukx S, Clijsen R, Buyl R, Goossens M, Meeusen R, Kerckhofs E. Trunk muscle activity during walking in persons with multiple sclerosis: the influence of body weight support. NeuroRehabilitation. 2014;34(2):323-35. doi: 10.3233/NRE-131044. — View Citation

Teixeira da Cunha Filho I, Lim PA, Qureshy H, Henson H, Monga T, Protas EJ. A comparison of regular rehabilitation and regular rehabilitation with supported treadmill ambulation training for acute stroke patients. J Rehabil Res Dev. 2001 Mar-Apr;38(2):245-55. — View Citation

Threlkeld AJ, Cooper LD, Monger BP, Craven AN, Haupt HG. Temporospatial and kinematic gait alterations during treadmill walking with body weight suspension. Gait Posture. 2003 Jun;17(3):235-45. — View Citation

Vallery H, Lutz P, von Zitzewitz J, Rauter G, Fritschi M, Everarts C, Ronsse R, Curt A, Bolliger M. Multidirectional transparent support for overground gait training. IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650512. doi: 10.1109/ICORR.2013.6650512. — View Citation

van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I, Moraud EM, Duis S, Dominici N, Micera S, Musienko P, Courtine G. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science. 2012 Jun 1;336(6085):1182-5. doi: 10.1126/science.1217416. — View Citation

Visintin M, Barbeau H, Korner-Bitensky N, Mayo NE. A new approach to retrain gait in stroke patients through body weight support and treadmill stimulation. Stroke. 1998 Jun;29(6):1122-8. — View Citation

von Zitzewitz J, Asboth L, Fumeaux N, Hasse A, Baud L, Vallery H, Courtine G. A neurorobotic platform for locomotor prosthetic development in rats and mice. J Neural Eng. 2016 Apr;13(2):026007. doi: 10.1088/1741-2560/13/2/026007. Epub 2016 Feb 10. — View Citation

Wenger N, Moraud EM, Raspopovic S, Bonizzato M, DiGiovanna J, Musienko P, Morari M, Micera S, Courtine G. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci Transl Med. 2014 Sep 24;6(255):255ra133. doi: 10.1126/scitranslmed.3008325. — View Citation

Werner C, Von Frankenberg S, Treig T, Konrad M, Hesse S. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study. Stroke. 2002 Dec;33(12):2895-901. — View Citation

Wessels M, Lucas C, Eriks I, de Groot S. Body weight-supported gait training for restoration of walking in people with an incomplete spinal cord injury: a systematic review. J Rehabil Med. 2010 Jun;42(6):513-9. doi: 10.2340/16501977-0525. Review. — View Citation

Winter DA, MacKinnon CD, Ruder GK, Wieman C. An integrated EMG/biomechanical model of upper body balance and posture during human gait. Prog Brain Res. 1993;97:359-67. — View Citation

* Note: There are 40 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Usability of the robot - Fixation From the user/therapist the information on the usability of the robot (CRF I) is being assessed. This questionnaire is only filled once by each user/therapist.
Feedback on patient/subject fixation (Ordinal scale from 1:useful to 5:not useful)
2 minutes
Primary Usability of the robot - Applicability From the user/therapist the information on the usability of the robot (CRF I) is being assessed. This questionnaire is only filled once by each user/therapist.
Feedback on clinical applicability (Ordinal scale from 1:useful to 5:not useful)
2 minutes
Primary Usability of the robot - Robot support From the user/therapist the information on the usability of the robot (CRF I) is being assessed. This questionnaire is only filled once by each user/therapist.
Feedback on robot support (Ordinal scale from 1:useful to 5:not useful)
2 minutes
Primary Usability of the robot - User interface From the user/therapist the information on the usability of the robot (CRF I) is being assessed. This questionnaire is only filled once by each user/therapist.
Feedback on user interface (Graphical user interface) (Ordinal scale from 1:useful to 5:not useful)
2 minutes
Primary Usability of the robot - Interaction From the user/therapist the information on the usability of the robot (CRF I) is being assessed. This questionnaire is only filled once by each user/therapist.
Feedback on the LEAP interaction (Ordinal scale from 1:useful to 5:not useful)
2 minutes
Primary Risk control validation - Observer From an independent observer (investigator, or a member of the development team) the occurrence of use errors is recorded (CRF III):
Each primary operating function of the robot is rated (Ordinal scale from 0 to 1 for 'use error occurred' or 'no use error' This questionnaire has only to be filled out once for each user/therapist.
1 hour
Primary Risk control validation - User The risk control measures are validated by the user/therapist (CRF IV):
The different risk controls are rated (Ordinal scale from 0 to 1 for 'Acceptable' or 'Not acceptable') This questionnaire has only to be filled out once by each user/therapist.
1 hour
Primary Participant feeling of safety/comfort - Fixation From the participant information on the comfort/safety is being assessed (CRF II):
Feedback on the fixation of the patient (Open-ended question)
1 minute
Primary Participant feeling of safety/comfort - Robot training From the participant information on the comfort/safety is being assessed (CRF II):
Feedback on the robot training (Ordinal scale from 0 to 5)
1 minute
Primary Participant feeling of safety/comfort - Robot support From the participant information on the comfort/safety is being assessed (CRF II):
Feedback on the robot support (Ordinal scale from 0 to 5)
1 minute
Secondary Robot Measurement - Patient position The robot records the patient position in the room (in meters). 1 hour
Secondary Robot Measurement - Walking speed The robot records the walking speed (in meters per second). 1 hour
Secondary Robot Measurement - Occurred errors The robot records the errors occurred (error number). 1 hour
Secondary Robot Measurement - Support forces The robot records the support forces (in Newton). 1 hour
Secondary Robot Measurement - Fall detection The robot records the number of detected falls (Amount of detected falls). 1 hour
Secondary Robot Measurement - Walked distance The robot records the distance the patient walked during the session (in meters). 1 hour
Secondary EMG system Upon availability, an EMG system will be used to measure muscle activity during the session. 1 hour
Secondary Patient characteristics - Testing date The testing date (day/month/year) is being recorded. 1 minutes
Secondary Patient characteristics - Identification number A unique participant identification number is being recorded. 1 minutes
Secondary Patient characteristics - Body height The body height (in cm) is being recorded. 1 minutes
Secondary Patient characteristics - Body weight The body weight (in kg) is being recorded. 1 minutes
Secondary Patient characteristics - Waist size The waist size (in cm) is being recorded. 1 minutes
Secondary Patient characteristics - Tight circumference The tight circumference (in cm) is being recorded. 1 minutes
Secondary Patient characteristics - Chest size The chest size (in cm) is being recorded. 1 minutes
Secondary Patient characteristics - Age The following patient characteristic is being transferred from the clinical internal database (obtained in the CRR on a regular basis): The age of the participant (in years, decimal) is being recorded. 1 minutes
Secondary Patient characteristics - Stationary or ambulant The following patient characteristic is being transferred from the clinical internal database (obtained in the CRR on a regular basis): It will be recorded whether the patient is stationary or ambulant. 1 minutes
Secondary Patient characteristics - Dominant side The following patient characteristic is being transferred from the clinical internal database (obtained in the CRR on a regular basis): The dominant body side (left or right) is being recorded. 1 minutes
Secondary Patient characteristics - Walking aid The following patient characteristic is being transferred from the clinical internal database (obtained in the CRR on a regular basis):
If applicable: The type of walking aid (open-ended question) is being recorded.
1 minutes
Secondary Patient characteristics - Six minute walking test The following patient characteristic is being transferred from the clinical internal database (obtained in the CRR on a regular basis): Upon availability the outcome of the Six-minute walking test will be recorded (distance in meters. Longer distance corresponds to a better outcome.). 1 minutes
Secondary Patient characteristics - BAECKE score The following patient characteristic is being transferred from the clinical internal database (obtained in the CRR on a regular basis): BAECKE physical activity questionnaire (Score between 0: no activity, and 10: high activity). 1 minutes
Secondary Patient characteristics - Fugl-Meyer score The following patient characteristic is being transferred from the clinical internal database (obtained in the CRR on a regular basis): Lower limb subset of the Fugl-Meyer score. Fugl-Meyer assessment measures the sensorimotor function. (Score between 0: no function and 34: full functionality). 1 minutes
See also
  Status Clinical Trial Phase
Recruiting NCT04043052 - Mobile Technologies and Post-stroke Depression N/A
Recruiting NCT03869138 - Alternative Therapies for Improving Physical Function in Individuals With Stroke N/A
Completed NCT04034069 - Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial N/A
Completed NCT04101695 - Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects N/A
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Completed NCT00391378 - Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS) N/A
Recruiting NCT06204744 - Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial N/A
Active, not recruiting NCT06043167 - Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
Active, not recruiting NCT04535479 - Dry Needling for Spasticity in Stroke N/A
Completed NCT03985761 - Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke N/A
Recruiting NCT00859885 - International PFO Consortium N/A
Recruiting NCT06034119 - Effects of Voluntary Adjustments During Walking in Participants Post-stroke N/A
Completed NCT03622411 - Tablet-based Aphasia Therapy in the Chronic Phase N/A
Completed NCT01662960 - Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke N/A
Recruiting NCT05854485 - Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke N/A
Active, not recruiting NCT05520528 - Impact of Group Participation on Adults With Aphasia N/A
Completed NCT03366129 - Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
Completed NCT05805748 - Serious Game Therapy in Neglect Patients N/A
Completed NCT03281590 - Stroke and Cerebrovascular Diseases Registry
Recruiting NCT05993221 - Deconstructing Post Stroke Hemiparesis