Clinical Trials Logo

Clinical Trial Summary

Blepharoptosis (incomplete opening of the eyelids) occurs because of a disruption in the normal agonist-antagonist neuro-muscular complex balance. An external device could restore eyelid movement. A newer class of permanent magnets made of alloys of neodymium (Nd), iron (Fe) and boron (B) might provide the technology needed to develop a feasible external magnetic device that could restore eyelid movement.


Clinical Trial Description

Blepharoptosis (incomplete opening of the eyelids) occurs because of a disruption in the normal agonist-antagonist neuro-muscular complex balance. An external device, if able to generate an appropriately balanced force, could restore eyelid movement by performing the paralyzed function; for example, a ptotic (droopy) eyelid could be opened, and the functioning eyelid closure muscle could overcome the device's force (Conway, 1973; Barmettler et. al, 2014; Houston et. al, 2014). Despite this seemingly straight-forward application, permanent magnets for eyelid movement disorders have not thus far become an available treatment. It is possible that earlier magnetic materials lacked the strength (at sizes which were acceptable to patients) to effectively restore the blink, or methods of implantation or external mounting were not effective. A newer class of permanent magnets made of alloys of neodymium (Nd), iron (Fe) and boron (B) might provide the technology needed to develop a feasible external magnetic device. They generate the strongest static magnetic fields yet possible, (1.3T compared to 0.4T of conventional ferrite magnets) (Cyrot, 2005) with exceptional uniaxial magnetocrystalline anisotropy, which makes them resistive to demagnetization (Chikazumui, 1997). The increased magnetic force at a fraction of the size has led to attempts for other medical applications including implantation for gastroesophageal reflux disease (Ganz, 2013), in dental prosthetics (Uribe, 2006), ocular reconstructive surgery (de Negreiros, 2012), and glaucoma (Paschalis et. al, 2013). Problems with extended external non-surgical adhesion to the skin of the eyelid may be solved with hydrocolloid-based medical adhesives e.g. Tegadermâ„¢ (Chen, 1997), already used for IV catheter securement, wound dressing, and as a protective eye covering (FDA, 1997). This material is extremely thin, transparent, and oxygen permeable with an established safety profile for days to weeks of wear. The hydrophyllic properties (FDA, 1997) may be beneficial to the eyelids, which are often moist. In our prior work we established proof-of-concept data demonstrating safety and efficacy for temporary management ptosis up to 2 hour per day for 2 weeks. Due to the sensitive force distance relationship characteristics of magnetic fields and variable nature of ptosis (often worsens throughout the day) the MLP required frequent readjustment and consistent correction was difficult to achieve. Other challenges included lid redness with longer wear times (in the participants who wore the MLP longer than instructed), incomplete spontaneous blinking, and difficultly with self-application of the magnetic lid array to the eye lid. This study aims to address these challenges. In order to improve the MLP we will determine the range of force in the target severe ptosis population to open the lid and where blinking is inhibited, determine the best polarity combination between the lid magnets and the spectacle magnet, determine if rotating the spectacle magnet is a good method to allow simple force adjustment via a dial on the side of the frame, determine if custom made frames improve stability of the frame, and create an applicator tool to help participants apply the lid magnet themselves. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03818204
Study type Interventional
Source Massachusetts Eye and Ear Infirmary
Contact
Status Completed
Phase N/A
Start date February 7, 2019
Completion date December 1, 2023

See also
  Status Clinical Trial Phase
Recruiting NCT04043052 - Mobile Technologies and Post-stroke Depression N/A
Recruiting NCT03869138 - Alternative Therapies for Improving Physical Function in Individuals With Stroke N/A
Completed NCT04101695 - Hemodynamic Response of Anodal Transcranial Direct Current Stimulation Over the Cerebellar Hemisphere in Healthy Subjects N/A
Completed NCT04034069 - Effects of Priming Intermittent Theta Burst Stimulation on Upper Limb Motor Recovery After Stroke: A Randomized Controlled Trial N/A
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Completed NCT00391378 - Cerebral Lesions and Outcome After Cardiac Surgery (CLOCS) N/A
Recruiting NCT06204744 - Home-based Arm and Hand Exercise Program for Stroke: A Multisite Trial N/A
Active, not recruiting NCT06043167 - Clinimetric Application of FOUR Scale as in Treatment and Rehabilitation of Patients With Acute Cerebral Injury
Active, not recruiting NCT04535479 - Dry Needling for Spasticity in Stroke N/A
Completed NCT03985761 - Utilizing Gaming Mechanics to Optimize Telerehabilitation Adherence in Persons With Stroke N/A
Recruiting NCT00859885 - International PFO Consortium N/A
Recruiting NCT06034119 - Effects of Voluntary Adjustments During Walking in Participants Post-stroke N/A
Completed NCT03622411 - Tablet-based Aphasia Therapy in the Chronic Phase N/A
Completed NCT01662960 - Visual Feedback Therapy for Treating Individuals With Hemiparesis Following Stroke N/A
Recruiting NCT05854485 - Robot-Aided Assessment and Rehabilitation of Upper Extremity Function After Stroke N/A
Active, not recruiting NCT05520528 - Impact of Group Participation on Adults With Aphasia N/A
Completed NCT03366129 - Blood-Brain Barrier Disruption in People With White Matter Hyperintensities Who Have Had a Stroke
Completed NCT03281590 - Stroke and Cerebrovascular Diseases Registry
Completed NCT05805748 - Serious Game Therapy in Neglect Patients N/A
Recruiting NCT05993221 - Deconstructing Post Stroke Hemiparesis