Clinical Trials Logo

Clinical Trial Details — Status: Not yet recruiting

Administrative data

NCT number NCT06299176
Other study ID # ESHF-WHRT (2024-10362)
Secondary ID
Status Not yet recruiting
Phase Phase 1
First received
Last updated
Start date April 1, 2024
Est. completion date December 31, 2024

Study information

Verified date March 2024
Source McGill University Health Centre/Research Institute of the McGill University Health Centre
Contact Tarek Hijal, MD
Phone 514-934-1934
Email tarek.hijal.med@ssss.gouv.qc.ca
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

End-stage heart failure (ESHF) causes recurrent hospitalizations, cardiac arrhythmias, and intolerance to standard HF therapies are common as the disease progresses. Management focuses on controlling symptoms, correcting precipitants, avoiding triggers, and improving quality-of-life. The combination of recent preclinical and clinical data suggests that localized cardiac RT is relatively safe and has positive conductive and anti-proliferative effects in the "sick" heart. In this Phase 1 study, the investigators aim to assess the feasibility and safety of 5 Gy whole heart radiotherapy in six (6) ESHF participants with limited options for further medical therapy to control their disease. The investigators hypothesize that 5 Gy whole heart radiotherapy can improve LVEF and decrease blood markers of heart failure and inflammation including B-type natriuretic peptide (BNP), C-reactive protein (CRP), and troponins, while also having a very tolerable side effect profile.


Description:

HEART FAILURE Heart Failure (HF) is a heterogeneous syndrome manifested by vascular congestion and/or peripheral hypoperfusion in the setting of structural and/or functional cardiac abnormalities. Congestion commonly presents with dyspnea, reduced exercise tolerance, and edema while hypoperfusion results in end-organ dysfunction. HF is a major public health problem and because of its age-dependent increase in incidence and prevalence, it's one of the leading causes of death and hospitalization among the elderly. As a consequence of the worldwide increase in life expectancy, and due to improvements in the treatment of HF in recent years, the proportion of participants that reach an advanced phase of the disease, so-called ESHF, is steadily growing. HF is characterized by impairment in cardiac structure and function which, in its advanced phases, results in decreased cardiac output (hypoperfusion) and/or fluid buildup (congestion). Initially cardiac output (CO) is maintained through the Frank-Starling mechanism with LV dilation and wall thickening. Eventually myocardial contractility declines and stroke volume (SV) decreases . A compensatory increase in heart rate (HR) may initially help maintain cardiac output, but this too will ultimately fail to preserve output. Currently, patients with HF are most often categorized as having heart failure with reduced (HFrEF; LVEF <40%), mid-range (HFmrEF; LVEF 40-49%) or preserved ejection fraction (HFpEF; LVEF ≥50%). The four classical hemodynamic profiles of heart failure can be categorized in a two-by-two matrix based on filling pressures (presence or absence of congestion) and perfusion status (adequate/inadequate). Furthermore, patients are classified by the New York Heart Association (NYHA) based on the presence or absence of symptoms during rest and physical activity (Figure 2). Patients with ESHF typically live in the NYHA Class III-IV and in a fine balance between the "wet and warm" (i.e. relatively preserved perfusion but congested) and "wet and cold" (i.e. low perfusion and congested) categories. The two principal pathways mediating the pathophysiology of heart failure are the sympathetic nervous system (SNS) and the renin-angiotensin system (RAS). These systems are innately related, having the ability to further activate each other and ultimately resulting in a chronic state of increased effective circulating volume. Over time, myocardial alterations result in reduced responsiveness to these adaptive mechanisms, and thus a drop in cardiac output ensues. Not surprisingly the principal HF therapies target these pathways. The primary therapies have been comprised of the triad of ACE inhibitors (or angiotensin receptor blockers [ARB] if intolerant), beta-adrenoreceptor antagonists (beta-blockers), and mineralocorticoid receptor antagonists (MRAs) titrated to target doses. Unfortunately, in ESHF, medical optimization is often not tolerated because of worsening hypotension, hyperkalemia, and renal dysfunction. There is often a need to reduce the dose or eliminate these therapies which is a well-established marker of poor prognosis. Once diagnosed with ESHF focus turns towards defining the optimal therapeutic approach with options including orthotopic heart transplant (OHT), left ventricular assist device (LVAD) and/or palliation. Ultimately, a combination of these three strategies is often required. Left ventricular ejection fraction (LVEF) is generally viewed as a clinically useful phenotypic marker indicative of underlying pathophysiological mechanisms and sensitivity to therapy. End-stage heart failure (ESHF) manifests as severe and often relentless symptoms of dyspnea, fatigue, abdominal discomfort and ultimately cardiac cachexia with renal and hepatic dysfunction frequently further complicating the process. Recurrent hospitalizations, cardiac arrhythmias, and intolerance to standard HF therapies are common as the disease progresses. Management focuses on controlling symptoms, correcting precipitants, avoiding triggers, and improving quality-of-life (QOL). RADIATION THERAPY Radiation therapy involves delivering high energy x-rays precisely to a target with minimal dose to the surrounding clinical tissues. Accuracy in radiation therapy requires effective patient immobilization, precise target localization, and highly conformed dosimetry and isotropic dose fall-off. Dose calculations involve algorithms that account for effects of tissue heterogeneities, and the linear accelerators that deliver the treatment are also equipped with multileaf collimators and have the ability of using multiple non-overlapping beams of radiation as well as intensity modulated radiation therapy to maximize accuracy of target dose deposition while minimizing surrounding organ dose. Radiation therapy is used in many malignant and benign conditions with a variety of dose and fractionation schemes. For malignant diseases in the palliative setting, radiation therapy is delivered to painful or progressive sites of disease in a highly focused manner with significant benefit on controlling pain, local progression, and quality of life. Typical doses for these types of treatment vary and can be limited to 8 Gy in a single fraction. These treatments are tolerated extremely well by almost all patients with almost no side effects. Radiation therapy (RT) is utilized half of all patients with a cancer diagnosis. RT is effective in reducing populations of highly proliferative cells, a common feature of malignant disease. RT is also used successfully to treat many non-malignant disorders, including hyperproliferative and inflammatory conditions. The RT doses required for these non-malignant disorders are often much smaller and carry a lighter burden of adverse effects. Recently, a number of human and murine studies indicate that in heart failure (HF), proliferating macrophages and fibroblasts are major mediators of collateral tissue injury and progressive disease. Strategies that ablate these highly proliferative precursors in preclinical models attenuate features of heart failure progression. The use of high-dose stereotactic radiation therapy in patients with cardiac arrhythmias, specifically ventricular tachycardia (VT), has been shown to reduce arrhythmia burden in several human clinical trials and case series. In these studies, a single dose (25 Gy) of non-invasive electrophysiologically guided localized RT was safe, substantially reduced VT, improved left ventricular ejection fraction (LVEF) and improved quality of life (QOL) in 50-70% of patients with no other options for therapy. The initial hypothesis for this effect was that RT would create a scar, similar to how invasive catheter therapies are utilized to ablate arrhythmias. However, subsequent mechanistic studies suggest that rather than simply scarring the targeted tissue, RT stimulates physiologic changes including increased sodium channel (NaV1.5) and connexin-43 (Cx-43) expression, increasing conduction velocity within the heart. These physiologic changes were also seen outside of the 25Gy target areas, suggesting that smaller doses of radiation is sufficient to stimulate these effects. Retrospective analysis of the RT dosimetry from patients treated for VT demonstrated that 5 Gy was reflective of the approximate whole heart dose received outside of the targeted scar in these patients. A recent hypothesis postulated that 5 Gy may be sufficient to upregulate pro-conductive proteins and signaling pathways while attenuating cardiac remodeling via decreasing levels of macrophages and fibroblasts; the primary proliferative precursors to adverse cardiac remodeling in many models of cardiac injury. This was investigated in murine heart failure models, which demonstrated that 5 Gy of cardiac radiation delivered after injury attenuated adverse cardiac remodeling, improved LVEF, reduced fibrosis, and decreased proliferation of macrophages and fibroblasts. HYPOTHESIS The combination of recent preclinical and clinical data suggests that localized cardiac RT is relatively safe and has positive conductive and anti-proliferative effects in the "sick" heart. In this Phase 1 study, the investigators aim to assess the feasibility and safety of 5 Gy whole heart radiotherapy in six (6) ESHF particip with limited options for further medical therapy to control their disease. The investigators hypothesize that 5 Gy whole heart radiotherapy can improve LVEF and decrease blood markers of heart failure and inflammation including B-type natriuretic peptide (BNP), C-reactive protein (CRP), and troponins, while also having a very tolerable side effect profile.


Recruitment information / eligibility

Status Not yet recruiting
Enrollment 6
Est. completion date December 31, 2024
Est. primary completion date December 31, 2024
Accepts healthy volunteers No
Gender All
Age group 65 Years and older
Eligibility Inclusion Criteria: - at least 65 years of age - End-stage heart failure NYHA class 3-4, - LVEF = 30% - on maximum medical therapy with progressive symptoms/disease as defined by their primary cardiologist Exclusion Criteria: - previous RT in the treatment field that precludes further RT - active connective tissue disease - interstitial pulmonary fibrosis - Participants who are unable to be positioned in a manner where treatment can be safely delivered

Study Design


Related Conditions & MeSH terms


Intervention

Other:
Whole Heart Radiation Therapy
Radiation to the whole heart in one treatment with a prescribed dose of 5 Gy.

Locations

Country Name City State
n/a

Sponsors (1)

Lead Sponsor Collaborator
McGill University Health Centre/Research Institute of the McGill University Health Centre

References & Publications (29)

Bajpai G, Bredemeyer A, Li W, Zaitsev K, Koenig AL, Lokshina I, Mohan J, Ivey B, Hsiao HM, Weinheimer C, Kovacs A, Epelman S, Artyomov M, Kreisel D, Lavine KJ. Tissue Resident CCR2- and CCR2+ Cardiac Macrophages Differentially Orchestrate Monocyte Recruitment and Fate Specification Following Myocardial Injury. Circ Res. 2019 Jan 18;124(2):263-278. doi: 10.1161/CIRCRESAHA.118.314028. — View Citation

Borlaug BA, Redfield MM. Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation. 2011 May 10;123(18):2006-13; discussion 2014. doi: 10.1161/CIRCULATIONAHA.110.954388. No abstract available. — View Citation

Busija L, Pausenberger E, Haines TP, Haymes S, Buchbinder R, Osborne RH. Adult measures of general health and health-related quality of life: Medical Outcomes Study Short Form 36-Item (SF-36) and Short Form 12-Item (SF-12) Health Surveys, Nottingham Health Profile (NHP), Sickness Impact Profile (SIP), Medical Outcomes Study Short Form 6D (SF-6D), Health Utilities Index Mark 3 (HUI3), Quality of Well-Being Scale (QWB), and Assessment of Quality of Life (AQoL). Arthritis Care Res (Hoboken). 2011 Nov;63 Suppl 11:S383-412. doi: 10.1002/acr.20541. No abstract available. — View Citation

Desai MY, Windecker S, Lancellotti P, Bax JJ, Griffin BP, Cahlon O, Johnston DR. Prevention, Diagnosis, and Management of Radiation-Associated Cardiac Disease: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019 Aug 20;74(7):905-927. doi: 10.1016/j.jacc.2019.07.006. — View Citation

Dick SA, Epelman S. Chronic Heart Failure and Inflammation: What Do We Really Know? Circ Res. 2016 Jun 24;119(1):159-76. doi: 10.1161/CIRCRESAHA.116.308030. — View Citation

Kemp CD, Conte JV. The pathophysiology of heart failure. Cardiovasc Pathol. 2012 Sep-Oct;21(5):365-71. doi: 10.1016/j.carpath.2011.11.007. Epub 2012 Jan 5. — View Citation

Khajavi A, Moshki M, Minaee S, Vakilian F, Montazeri A, Hashemizadeh H. Chronic heart failure health-related quality of life questionnaire (CHFQOLQ-20): development and psychometric properties. BMC Cardiovasc Disord. 2023 Mar 29;23(1):165. doi: 10.1186/s12872-023-03197-9. — View Citation

Lafuse WP, Wozniak DJ, Rajaram MVS. Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells. 2020 Dec 31;10(1):51. doi: 10.3390/cells10010051. — View Citation

Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, Ornitz DM, Randolph GJ, Mann DL. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16029-34. doi: 10.1073/pnas.1406508111. Epub 2014 Oct 27. Erratum In: Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):E1414. Dosage error in article text. — View Citation

Le Tourneau C, Lee JJ, Siu LL. Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst. 2009 May 20;101(10):708-20. doi: 10.1093/jnci/djp079. Epub 2009 May 12. — View Citation

Lydiard PGDip S, Blanck O, Hugo G, O'Brien R, Keall P. A Review of Cardiac Radioablation (CR) for Arrhythmias: Procedures, Technology, and Future Opportunities. Int J Radiat Oncol Biol Phys. 2021 Mar 1;109(3):783-800. doi: 10.1016/j.ijrobp.2020.10.036. Epub 2020 Nov 5. — View Citation

McMurray JJ. Clinical practice. Systolic heart failure. N Engl J Med. 2010 Jan 21;362(3):228-38. doi: 10.1056/NEJMcp0909392. No abstract available. — View Citation

Micke O, Seegenschmiedt MH; German Working Group on Radiotherapy in Germany. Consensus guidelines for radiation therapy of benign diseases: a multicenter approach in Germany. Int J Radiat Oncol Biol Phys. 2002 Feb 1;52(2):496-513. doi: 10.1016/s0360-3016(01)01814-4. — View Citation

Nohria A, Tsang SW, Fang JC, Lewis EF, Jarcho JA, Mudge GH, Stevenson LW. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol. 2003 May 21;41(10):1797-804. doi: 10.1016/s0735-1097(03)00309-7. — View Citation

Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013 Jul 23;62(4):263-71. doi: 10.1016/j.jacc.2013.02.092. Epub 2013 May 15. — View Citation

Pedersen LN, Valenzuela Ripoll C, Ozcan M, Guo Z, Lotfinaghsh A, Zhang S, Ng S, Weinheimer C, Nigro J, Kovacs A, Diab A, Klaas A, Grogan F, Cho Y, Ataran A, Luehmann H, Heck A, Kolb K, Strong L, Navara R, Walls GM, Hugo G, Samson P, Cooper D, Reynoso FJ, Schwarz JK, Moore K, Lavine K, Rentschler SL, Liu Y, Woodard PK, Robinson C, Cuculich PS, Bergom C, Javaheri A. Cardiac radiation improves ventricular function in mice and humans with cardiomyopathy. Med. 2023 Dec 8;4(12):928-943.e5. doi: 10.1016/j.medj.2023.10.006. Epub 2023 Nov 28. — View Citation

Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Rev Esp Cardiol (Engl Ed). 2016 Dec;69(12):1167. doi: 10.1016/j.rec.2016.11.005. No abstract available. Erratum In: Rev Esp Cardiol (Engl Ed). 2017 Apr;70(4):309-310. English, Spanish. — View Citation

Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ Res. 2016 Jun 24;119(1):91-112. doi: 10.1161/CIRCRESAHA.116.303577. — View Citation

Robinson CG, Samson PP, Moore KMS, Hugo GD, Knutson N, Mutic S, Goddu SM, Lang A, Cooper DH, Faddis M, Noheria A, Smith TW, Woodard PK, Gropler RJ, Hallahan DE, Rudy Y, Cuculich PS. Phase I/II Trial of Electrophysiology-Guided Noninvasive Cardiac Radioablation for Ventricular Tachycardia. Circulation. 2019 Jan 15;139(3):313-321. doi: 10.1161/CIRCULATIONAHA.118.038261. — View Citation

Rodel F, Fournier C, Wiedemann J, Merz F, Gaipl US, Frey B, Keilholz L, Seegenschmiedt MH, Rodel C, Hehlgans S. Basics of Radiation Biology When Treating Hyperproliferative Benign Diseases. Front Immunol. 2017 May 3;8:519. doi: 10.3389/fimmu.2017.00519. eCollection 2017. — View Citation

Rurik JG, Tombacz I, Yadegari A, Mendez Fernandez PO, Shewale SV, Li L, Kimura T, Soliman OY, Papp TE, Tam YK, Mui BL, Albelda SM, Pure E, June CH, Aghajanian H, Weissman D, Parhiz H, Epstein JA. CAR T cells produced in vivo to treat cardiac injury. Science. 2022 Jan 7;375(6576):91-96. doi: 10.1126/science.abm0594. Epub 2022 Jan 6. — View Citation

Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 2015 Sep;12(9):527-40. doi: 10.1038/nrclinonc.2015.120. Epub 2015 Jun 30. — View Citation

Schilling JD, Machkovech HM, Kim AH, Schwendener R, Schaffer JE. Macrophages modulate cardiac function in lipotoxic cardiomyopathy. Am J Physiol Heart Circ Physiol. 2012 Dec 1;303(11):H1366-73. doi: 10.1152/ajpheart.00111.2012. Epub 2012 Oct 5. Erratum In: Am J Physiol Heart Circ Physiol. 2013 Feb 15;304(4):H632. Schwedwener, Reto [corrected to Schwendener, Reto]. — View Citation

Spencer K, Parrish R, Barton R, Henry A. Palliative radiotherapy. BMJ. 2018 Mar 23;360:k821. doi: 10.1136/bmj.k821. No abstract available. — View Citation

Srinivasan, S. and R. Kundu, Fluid Management in Cardiogenic Shock, in Rational Use of Intravenous Fluids in Critically Ill Patients, M.L.N.G. Malbrain, et al., Editors. 2024, Springer International Publishing: Cham. p. 315-328.

Timmerman R. A Story of Hypofractionation and the Table on the Wall. Int J Radiat Oncol Biol Phys. 2022 Jan 1;112(1):4-21. doi: 10.1016/j.ijrobp.2021.09.027. No abstract available. — View Citation

Triposkiadis F, Butler J, Abboud FM, Armstrong PW, Adamopoulos S, Atherton JJ, Backs J, Bauersachs J, Burkhoff D, Bonow RO, Chopra VK, de Boer RA, de Windt L, Hamdani N, Hasenfuss G, Heymans S, Hulot JS, Konstam M, Lee RT, Linke WA, Lunde IG, Lyon AR, Maack C, Mann DL, Mebazaa A, Mentz RJ, Nihoyannopoulos P, Papp Z, Parissis J, Pedrazzini T, Rosano G, Rouleau J, Seferovic PM, Shah AM, Starling RC, Tocchetti CG, Trochu JN, Thum T, Zannad F, Brutsaert DL, Segers VF, De Keulenaer GW. The continuous heart failure spectrum: moving beyond an ejection fraction classification. Eur Heart J. 2019 Jul 1;40(26):2155-2163. doi: 10.1093/eurheartj/ehz158. — View Citation

Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL; American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013 Oct 15;62(16):e147-239. doi: 10.1016/j.jacc.2013.05.019. Epub 2013 Jun 5. No abstract available. — View Citation

Zhang DM, Navara R, Yin T, Szymanski J, Goldsztejn U, Kenkel C, Lang A, Mpoy C, Lipovsky CE, Qiao Y, Hicks S, Li G, Moore KMS, Bergom C, Rogers BE, Robinson CG, Cuculich PS, Schwarz JK, Rentschler SL. Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis. Nat Commun. 2021 Sep 24;12(1):5558. doi: 10.1038/s41467-021-25730-0. — View Citation

* Note: There are 29 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Change in mean left ventricle ejection fraction Efficacy Endpoint 6 weeks, 12 weeks, 24 weeks
Primary Acute adverse events definitely or probably related to radiation therapy at 30 days as per CTCAE v 5.0 Safety Endpoint 30 days
Secondary Overall survival Death from any cause after treatment 6 months
Secondary Hospital stays length of hospitalization after treatment due to heart failure exacerbation 6 months
Secondary Subacute adverse events Adverse events definitely or probably related to radiation therapy 30-90 days after treatment
Secondary Late adverse events Adverse events definitely or probably related to radiation therapy 90 days to 6 months after treatment
Secondary Medication Changes - dose changes in dose of medications following radiotherapy 6 months
Secondary Medication Changes - number changes innumber of medications following radiotherapy 6 months
Secondary Quality of life CHFQOLQ-20 quality of life based on questionnaire results following treatment day 0, 6 weeks, 12 weeks, 24 weeks
Secondary Quality of life - SF-36 quality of life based on questionnaire results following treatment day 0, 6 weeks, 12 weeks, 24 weeks
Secondary Troponin changes Changes in value of blood marker. 6 weeks, 12 weeks, 24 weeks
Secondary Lactate changes Changes in value of blood marker. 6 weeks, 12 weeks, 24 weeks
Secondary Renal Function Changes in value of blood marker. 6 weeks, 12 weeks, 24 weeks
Secondary b-natrurietic peptide Changes in value of blood marker. 6 weeks, 12 weeks, 24 weeks
See also
  Status Clinical Trial Phase
Completed NCT05077293 - Building Electronic Tools To Enhance and Reinforce Cardiovascular Recommendations - Heart Failure
Completed NCT03614169 - Direct HIS-pacing as an Alternative to BiV-pacing in Symptomatic HFrEF Patients With True LBBB N/A
Recruiting NCT05278962 - HF Patients With LVADs Being Treated With SGLT2i Phase 4
Completed NCT04210375 - Study of JK07 in Subjects With Heart Failure With Reduced Ejection Fraction (HFrEF) Phase 1
Completed NCT05001165 - Dashboard Activated Services and Tele-Health for Heart Failure N/A
Active, not recruiting NCT03701880 - Early Use of Ivabradine in Heart Failure N/A
Recruiting NCT05650658 - Left vs Left Randomized Clinical Trial N/A
Recruiting NCT05992116 - Iron Deficiency in Patients With Heart Failure and Reduced and Mildly Reduced Ejection Fraction
Recruiting NCT05365568 - Left Bundle Branch Area Pacing for Cardiac Resynchronization Therapy: A Randomized Study N/A
Active, not recruiting NCT05204238 - Follow Up of acuTe Heart failUre: a pRospective Echocardiographic and Clinical Study (FUTURE)
Not yet recruiting NCT04420065 - Effects of Preferential Left Ventricular Pacing on Ventriculoarterial Coupling and Clinical Course of Heart Failure N/A
Terminated NCT03479424 - Home Outpatient Monitoring and Engagement to Predict HF Exacerbation
Completed NCT02113033 - VAgal Nerve Stimulation: safeGUARDing Heart Failure Patients Phase 2
Recruiting NCT03209180 - Immediate Release Versus Slow Release Carvedilol in Heart Failure Phase 4
Recruiting NCT05299879 - Screening for Advanced Heart Failure IN Stable ouTpatientS - The SAINTS Study
Recruiting NCT05637853 - Telemonitored Fast Track Medical Sequencing for Heart Failure With Reduced Ejection Fraction
Completed NCT03870074 - CPET Predicts Long-term Survival and Positive Response to CRT
Recruiting NCT04590001 - Effect of the MobiusHD® in Patients With Heart Failure N/A
Recruiting NCT05072054 - Comparison of Effects of Atorvastatin Versus Rosuvastatin on Cardiac Function in Heart Failure Patients Phase 4
Completed NCT06233695 - Gender-based Differences in the Outcome of Treatment With Aldosterone Antagonists in Patients With Heart Failure