Clinical Trials Logo

Clinical Trial Details — Status: Terminated

Administrative data

NCT number NCT01984892
Other study ID # GCO 13-1687
Secondary ID BB-43984
Status Terminated
Phase Phase 2
First received November 5, 2013
Last updated December 21, 2017
Start date November 2013
Est. completion date August 2014

Study information

Verified date December 2017
Source Icahn School of Medicine at Mount Sinai
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

The purpose of this study is to test the safety of a course of injections containing Poly-ICLC in patients with advanced solid tumors that can be easily and safely reached with a needle.

Poly-ICLC is a compound that has been used to help the body in its fight against cancer.


Description:

We hypothesize that this therapeutic in-situ autovaccination strategy is comprised of three immunomodulatory steps. The first is the innate immune local tumor killing induced by intratumoral Hiltonol (via NK, TNF, etc). A very close second step is optimal Th1-weighted priming through the in-situ combination of the poly-ICLC danger signal with the tumor antigens released in step 1 and further processed and cross-presented by poly-ICLC activated mDC, etc. The repeated administration of the Hiltonol danger signal IT in the context of the patient's own tumor antigens and in a way that mimics a natural viral infection may be critical to this step. Once the system is optimally primed, the third step is targeting and maintenance of the immune response and its facilitation at remote tumor sites with IM poly-ICLC through chemokine release, inflammasome activation and other costimulatory factors.


Recruitment information / eligibility

Status Terminated
Enrollment 8
Est. completion date August 2014
Est. primary completion date August 2014
Accepts healthy volunteers No
Gender All
Age group 14 Years and older
Eligibility Inclusion Criteria:

- Histologically confirmed diagnosis of melanoma, squamous head and neck cancer, sarcoma, squamous cell carcinoma of the skin, basal cell skin cancer, or breast cancer

- Sarcoma Patients must be @ least14 yrs of age; all others 18 yrs of age or older.

- Un-resectable disease. Patients with resectable disease may be enrolled after having refused surgery and documented consultation with a surgeon.

- Disease progressed through @ least 1 systemic therapy or through local irradiation within the preceding 6 mos.

- Radiologically or visually measurable recurrent or metastatic disease and @ least 10mm in longest dimension.

- At least 1 accessible primary or metastatic tumor site that can be readily injected IT with poly-ICLC with or without ultrasound guidance. Lesion can be superficial cutaneous, subcutaneous or within a readily accessible lymph node & must measure @ least 10mm in longest dimension.

- Tumor site injection cannot have been irradiated within 8 wks of C1D1

- ECOG performance status = 2.

- Normal hematologic, renal & liver function. INR<2 if off of anticoagulation. Patients on anticoagulation therapy with an INR>2 may be enrolled at the discretion of the investigator.

- Patients able to provide informed consent.

- Must agree to follow acceptable birth control methods and continue for @ least 2 mos. after last poly-ICLC dose. Women of childbearing potential must have a (-) pregnancy test.

Exclusion Criteria:

- Serious concurrent infection or medical illness.

- Bulky intracranial metastatic disease with shift of midline structures or progressive brain metastasis. Administration of immunotherapy or conventional chemotherapy treatments for metastatic cancer within 4 wks of C1D1

- Radiation treatments within 4 wks of C1D1

- AIDS defined as a CD4 count < then 200 in the context of HIV sero-positivity or chronically is taking immunosuppressive medication such as steroids or transplant related medications.

- Life expectancy of < than 6 mos.

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Poly-ICLC
Cycle 1-Weeks 1 and 2: 1mg Poly-ICLC intratumoral (IT) injections (t=6) into same lesion over 2 weeks. Weeks 3-9: 1mg Poly-ICLC 2x/week intramuscularly (IM) into thighs or upper arms. Week 10: No treatment. CT scan of chest, abdomen, pelvis and extremities or neck; possible MRI brain scan. Cycle 2-Weeks 11 and 12: 1mg Poly-ICLC IT injections (t=6) into same lesion over 2 weeks. Weeks 13-19 - 1mg Poly-ICLC 2x/weekly IM in thighs or upper arms. Weeks 20-26: no treatment. Week 26, evaluate response in absence of inflammation. Maintenance - Weeks 27-36: For patients with stable disease or response; IM poly-ICLC injections; evaluation of clinical and immune response. Week 38 repeat tumor assessment, optional biopsy Follow Up via phone every 3 months for 30months, after completion of treatments.

Locations

Country Name City State
United States Icahn School of Medicine at Mount Sinai New York New York

Sponsors (2)

Lead Sponsor Collaborator
Nina Bhardwaj Oncovir, Inc.

Country where clinical trial is conducted

United States, 

References & Publications (33)

Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH, Kim YH, Hoppe RT, Knox SJ, Shin LK, Wapnir I, Tibshirani RJ, Levy R. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol. 2010 Oct 1;28(28):4324-32. doi: 10.1200/JCO.2010.28.9793. Epub 2010 Aug 9. — View Citation

Caskey M, Lefebvre F, Filali-Mouhim A, Cameron MJ, Goulet JP, Haddad EK, Breton G, Trumpfheller C, Pollak S, Shimeliovich I, Duque-Alarcon A, Pan L, Nelkenbaum A, Salazar AM, Schlesinger SJ, Steinman RM, Sékaly RP. Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. J Exp Med. 2011 Nov 21;208(12):2357-66. doi: 10.1084/jem.20111171. Epub 2011 Nov 7. — View Citation

Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. J Exp Med. 1999 Mar 1;189(5):821-9. — View Citation

Chew V, Tow C, Huang C, Bard-Chapeau E, Copeland NG, Jenkins NA, Weber A, Lim KH, Toh HC, Heikenwalder M, Ng IO, Nardin A, Abastado JP. Toll-like receptor 3 expressing tumor parenchyma and infiltrating natural killer cells in hepatocellular carcinoma patients. J Natl Cancer Inst. 2012 Dec 5;104(23):1796-807. doi: 10.1093/jnci/djs436. Epub 2012 Nov 29. — View Citation

Cho HI, Lee YR, Celis E. Interferon ? limits the effectiveness of melanoma peptide vaccines. Blood. 2011 Jan 6;117(1):135-44. doi: 10.1182/blood-2010-08-298117. Epub 2010 Oct 1. — View Citation

Davies ME, Field AK. Effect of poly I:C/poly-L-lysine (poly ICL) on the development of murine osteogenic sarcoma. J Interferon Res. 1983;3(1):89-95. — View Citation

Flynn BJ, Kastenmüller K, Wille-Reece U, Tomaras GD, Alam M, Lindsay RW, Salazar AM, Perdiguero B, Gomez CE, Wagner R, Esteban M, Park CG, Trumpfheller C, Keler T, Pantaleo G, Steinman RM, Seder R. Immunization with HIV Gag targeted to dendritic cells followed by recombinant New York vaccinia virus induces robust T-cell immunity in nonhuman primates. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7131-6. doi: 10.1073/pnas.1103869108. Epub 2011 Apr 5. — View Citation

Gbewonyo WS, Candy DJ. Separation of insecticidal components from an extract of the roots of male Piper guineense (west African black pepper) by gas chromatography. Toxicon. 1992 Sep;30(9):1037-42. — View Citation

Geiss G, Jin G, Guo J, Bumgarner R, Katze MG, Sen GC. A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J Biol Chem. 2001 Aug 10;276(32):30178-82. — View Citation

Hoos A, Eggermont AM, Janetzki S, Hodi FS, Ibrahim R, Anderson A, Humphrey R, Blumenstein B, Old L, Wolchok J. Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst. 2010 Sep 22;102(18):1388-97. doi: 10.1093/jnci/djq310. Epub 2010 Sep 8. Review. — View Citation

Houot R, Levy R. T-cell modulation combined with intratumoral CpG cures lymphoma in a mouse model without the need for chemotherapy. Blood. 2009 Apr 9;113(15):3546-52. doi: 10.1182/blood-2008-07-170274. Epub 2008 Oct 21. — View Citation

Huang CC, Duffy KE, San Mateo LR, Amegadzie BY, Sarisky RT, Mbow ML. A pathway analysis of poly(I:C)-induced global gene expression change in human peripheral blood mononuclear cells. Physiol Genomics. 2006 Jul 12;26(2):125-33. Epub 2006 Mar 22. — View Citation

Kajiwara K, Morishima H, Akiyama K, Yanagihara Y. Expression and function of the inducible costimulator ligand B7-H2 in human airway smooth muscle cells. Allergol Int. 2009 Dec;58(4):573-83. doi: 10.2332/allergolint.09-OA-0113. Epub 2009 Sep 25. — View Citation

Longhi MP, Trumpfheller C, Idoyaga J, Caskey M, Matos I, Kluger C, Salazar AM, Colonna M, Steinman RM. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med. 2009 Jul 6;206(7):1589-602. doi: 10.1084/jem.20090247. Epub 2009 Jun 29. — View Citation

Lu B, Nakamura T, Inouye K, Li J, Tang Y, Lundbäck P, Valdes-Ferrer SI, Olofsson PS, Kalb T, Roth J, Zou Y, Erlandsson-Harris H, Yang H, Ting JP, Wang H, Andersson U, Antoine DJ, Chavan SS, Hotamisligil GS, Tracey KJ. Novel role of PKR in inflammasome activation and HMGB1 release. Nature. 2012 Aug 30;488(7413):670-4. doi: 10.1038/nature11290. — View Citation

Maluish AE, Reid JW, Crisp EA, Overton WR, Levy H, Foon KA, Herberman RB. Immunomodulatory effects of poly(I,C)-LC in cancer patients. J Biol Response Mod. 1985 Dec;4(6):656-63. — View Citation

Mitsuhashi M. Ex vivo simulation of leukocyte function: stimulation of specific subset of leukocytes in whole blood followed by the measurement of function-associated mRNAs. J Immunol Methods. 2010 Dec 15;363(1):95-100. doi: 10.1016/j.jim.2010.10.002. Epub 2010 Oct 15. — View Citation

Morgan ET, Norman CA. Pretranslational suppression of cytochrome P-450h (IIC11) gene expression in rat liver after administration of interferon inducers. Drug Metab Dispos. 1990 Sep-Oct;18(5):649-53. — View Citation

Nathanson JA, Greengard P. "Second messengers" in the brain. Sci Am. 1977 Aug;237(2):109-19. — View Citation

Nierkens S, den Brok MH, Sutmuller RP, Grauer OM, Bennink E, Morgan ME, Figdor CG, Ruers TJ, Adema GJ. In vivo colocalization of antigen and CpG [corrected] within dendritic cells is associated with the efficacy of cancer immunotherapy. Cancer Res. 2008 Jul 1;68(13):5390-6. doi: 10.1158/0008-5472.CAN-07-6023. Erratum in: Cancer Res. 2008 Aug 15;68(16):6859. — View Citation

North RJ, Dunn PL, Havell EA. A role for tumor necrosis factor in poly(I:C)-induced hemorrhagic necrosis and T-cell-dependent regression of a murine sarcoma. J Interferon Res. 1991 Dec;11(6):333-40. — View Citation

Pedrazzoli P, Secondino S, Perfetti V, Comoli P, Montagna D. Immunotherapeutic Intervention against Sarcomas. J Cancer. 2011;2:350-6. Epub 2011 Jun 13. — View Citation

Pilaro AM, Taub DD, McCormick KL, Williams HM, Sayers TJ, Fogler WE, Wiltrout RH. TNF-alpha is a principal cytokine involved in the recruitment of NK cells to liver parenchyma. J Immunol. 1994 Jul 1;153(1):333-42. — View Citation

Rosenfeld MR, Chamberlain MC, Grossman SA, Peereboom DM, Lesser GJ, Batchelor TT, Desideri S, Salazar AM, Ye X. A multi-institution phase II study of poly-ICLC and radiotherapy with concurrent and adjuvant temozolomide in adults with newly diagnosed glioblastoma. Neuro Oncol. 2010 Oct;12(10):1071-7. doi: 10.1093/neuonc/noq071. Epub 2010 Jul 8. — View Citation

Salazar AM, Levy HB, Ondra S, Kende M, Scherokman B, Brown D, Mena H, Martin N, Schwab K, Donovan D, Dougherty D, Pulliam M, Ippolito M, Graves M, Brown H, Ommaya A. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery. 1996 Jun;38(6):1096-103; discussion 1103-4. — View Citation

Salem ML, El-Naggar SA, Kadima A, Gillanders WE, Cole DJ. The adjuvant effects of the toll-like receptor 3 ligand polyinosinic-cytidylic acid poly (I:C) on antigen-specific CD8+ T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu. Vaccine. 2006 Jun 12;24(24):5119-32. Epub 2006 May 2. — View Citation

Sivori S, Falco M, Della Chiesa M, Carlomagno S, Vitale M, Moretta L, Moretta A. CpG and double-stranded RNA trigger human NK cells by Toll-like receptors: induction of cytokine release and cytotoxicity against tumors and dendritic cells. Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10116-21. Epub 2004 Jun 24. — View Citation

Stahl-Hennig C, Eisenblätter M, Jasny E, Rzehak T, Tenner-Racz K, Trumpfheller C, Salazar AM, Uberla K, Nieto K, Kleinschmidt J, Schulte R, Gissmann L, Müller M, Sacher A, Racz P, Steinman RM, Uguccioni M, Ignatius R. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS Pathog. 2009 Apr;5(4):e1000373. doi: 10.1371/journal.ppat.1000373. Epub 2009 Apr 10. — View Citation

van der Most RG, Currie A, Robinson BW, Lake RA. Cranking the immunologic engine with chemotherapy: using context to drive tumor antigen cross-presentation towards useful antitumor immunity. Cancer Res. 2006 Jan 15;66(2):601-4. Review. — View Citation

Wick DA, Webb JR. A novel, broad spectrum therapeutic HPV vaccine targeting the E7 proteins of HPV16, 18, 31, 45 and 52 that elicits potent E7-specific CD8T cell immunity and regression of large, established, E7-expressing TC-1 tumors. Vaccine. 2011 Oct 13;29(44):7857-66. doi: 10.1016/j.vaccine.2011.07.090. Epub 2011 Aug 2. — View Citation

Wong JP, Christopher ME, Viswanathan S, Dai X, Salazar AM, Sun LQ, Wang M. Antiviral role of toll-like receptor-3 agonists against seasonal and avian influenza viruses. Curr Pharm Des. 2009;15(11):1269-74. Review. — View Citation

Zhu X, Fallert-Junecko BA, Fujita M, Ueda R, Kohanbash G, Kastenhuber ER, McDonald HA, Liu Y, Kalinski P, Reinhart TA, Salazar AM, Okada H. Poly-ICLC promotes the infiltration of effector T cells into intracranial gliomas via induction of CXCL10 in IFN-alpha and IFN-gamma dependent manners. Cancer Immunol Immunother. 2010 Sep;59(9):1401-9. doi: 10.1007/s00262-010-0876-3. Epub 2010 Jun 12. — View Citation

Zhu X, Nishimura F, Sasaki K, Fujita M, Dusak JE, Eguchi J, Fellows-Mayle W, Storkus WJ, Walker PR, Salazar AM, Okada H. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med. 2007 Feb 12;5:10. — View Citation

* Note: There are 33 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Other Overall Survival in Treated Patients Patients who are alive on the date of closing follow-up, or 30 months after completing all study treatments, will be censored on that date up to 30 months
Primary Progression-free Survival Progression-free survival defined as the time in weeks from study entry until tumor progression defined using the Wolchok criteria or death. Patients who are alive and free from progression on the date of closing follow-up will be censored on that date.
In order to minimize the potential for misdiagnosis of pseudoprogression, related to early inflammation, tumor measurement for determination of progression will be made at the earliest at 26 weeks.
average 52 weeks
Secondary Therapeutic Effect in Treated Patients Induction of innate and/or an adaptive, specific anti-tumor T cell immune response in the injected tumor lesion and also systemically. 24 months
See also
  Status Clinical Trial Phase
Recruiting NCT04681911 - Inetetamab Combined With Pyrotinib and Chemotherapy in the Treatment of HER2 Positive Metastatic Breast Cancer Phase 2
Terminated NCT04066790 - Pyrotinib or Trastuzumab Plus Nab-paclitaxel as Neoadjuvant Therapy in HER2-positive Breast Cancer Phase 2
Completed NCT04890327 - Web-based Family History Tool N/A
Completed NCT03591848 - Pilot Study of a Web-based Decision Aid for Young Women With Breast Cancer, During the Proposal for Preservation of Fertility N/A
Recruiting NCT03954197 - Evaluation of Priming Before in Vitro Maturation for Fertility Preservation in Breast Cancer Patients N/A
Terminated NCT02202746 - A Study to Assess the Safety and Efficacy of the VEGFR-FGFR-PDGFR Inhibitor, Lucitanib, Given to Patients With Metastatic Breast Cancer Phase 2
Active, not recruiting NCT01472094 - The Hurria Older PatiEnts (HOPE) With Breast Cancer Study
Recruiting NCT06057636 - Hypnosis for Pain in Black Women With Advanced Breast Cancer: A Feasibility Study N/A
Recruiting NCT06049446 - Combining CEM and Magnetic Seed Localization of Non-Palpable Breast Tumors
Recruiting NCT05560334 - A Single-Arm, Open, Exploratory Clinical Study of Pemigatinib in the Treatment of HER2-negative Advanced Breast Cancer Patients With FGFR Alterations Phase 2
Active, not recruiting NCT05501769 - ARV-471 in Combination With Everolimus for the Treatment of Advanced or Metastatic ER+, HER2- Breast Cancer Phase 1
Recruiting NCT04631835 - Phase I Study of the HS-10352 in Patients With Advanced Breast Cancer Phase 1
Completed NCT04307407 - Exercise in Breast Cancer Survivors N/A
Recruiting NCT03544762 - Correlation of 16α-[18F]Fluoro-17β-estradiol PET Imaging With ESR1 Mutation Phase 3
Terminated NCT02482389 - Study of Preoperative Boost Radiotherapy N/A
Enrolling by invitation NCT00068003 - Harvesting Cells for Experimental Cancer Treatments
Completed NCT00226967 - Stress, Diurnal Cortisol, and Breast Cancer Survival
Recruiting NCT06037954 - A Study of Mental Health Care in People With Cancer N/A
Recruiting NCT06019325 - Rhomboid Intercostal Plane Block on Chronic Pain Incidence and Acute Pain Scores After Mastectomy N/A
Recruiting NCT06006390 - CEA Targeting Chimeric Antigen Receptor T Lymphocytes (CAR-T) in the Treatment of CEA Positive Advanced Solid Tumors Phase 1/Phase 2