Clinical Trials Logo

Brain Tumor clinical trials

View clinical trials related to Brain Tumor.

Filter by:
  • Recruiting  
  • Page 1 ·  Next »

NCT ID: NCT06352710 Recruiting - Brain Tumor Clinical Trials

Determining Postoperative Recovery and the Impact of Adverse Events in Neurosurgery Based on Self-reported, App-based Longitudinal Assessment - a Collaborative Observational Research Project

Start date: June 12, 2023
Phase:
Study type: Observational

Analyzing the impact of surgery and adverse events (AEs) on patients' well-being is of paramount importance as it provides essential information for benefit-risk assessment. Current methods in outcome research are static, resource-intensive and subject to missing-data issues. Moreover, AEs are inconsistently reported using various grading systems that usually do not account for patients' subjective well-being. These are severe drawbacks for outcome research as it hinders monitoring, comparison, and improvement of treatment quality. The increasing use of smartphones offers unprecedented opportunities for data collection. We developed a free smartphone application to assess fluctuations of patients' well-being as a result of surgical treatment and possible AEs. The application is installed on each patient's smartphone and collects standardized data at defined timepoints before and after surgery (well-being, AE description and severity). By acquiring longitudinal patient-reported outcome before and after neurosurgical interventions, we aim to determine the regular postoperative course for specific surgical procedures, as well as any deviation thereof, depending on the occurrence and severity of AEs. We will evaluate the validity of existing AE classifications and, if necessary, propose a new patient-centered scheme. We hope that this will result in an increase in standardized reporting of patient outcome, and ultimately allow for evidence-based patient information and decision-making.

NCT ID: NCT06330298 Recruiting - Stroke Clinical Trials

Improving Social Cognition and Social Behaviour in Various Brain Disorders

T-ScEmo4ALL
Start date: May 31, 2021
Phase: N/A
Study type: Interventional

Impairments in aspects of social cognition are disorder-transcending: these have been demonstrated in various neurological disorders, such as traumatic brain injury (TBI), stroke, brain tumours (both low grade glioma's and meningioma's) and multiple sclerosis (MS). Social cognition involves processing of social information, in particular the abilities to perceive social signals, understand others and respond appropriately (Adolphs 2001). Crucial aspects of social cognition are the recognition of facial expressions of emotions, perspective taking (also referred to as mentalizing or Theory of Mind), and empathy. Impairments in social cognition can have a large negative impact on self-care, communication, social and professional functioning, and thus on quality of life of patients. Recently, a first multi-faceted treatment for social cognitive impairments in TBI was developed and evaluated; T-ScEmo (Training Social Cognition and Emotion). T-ScEmo turned out to be effective in reducing social cognitive symptoms and improving daily life social functioning in this particular group, with effects lasting over time (Westerhof-Evers et al, 2017, 2019). Unfortunately, up till now there are no evidence based, transdiagnostic treatment possibilities available for these impeding social cognition impairments in neurological patient groups, other than TBI. Therefore the aim of the present study is to investigate whether T-ScEmo is effective for social cognition disorders in patients with different neurological impairments, such as stroke (including subarachnoidal haemorrhage (SAH)), brain tumours, MS, infection (meningitis, encephalitis) and other. The secondary objective is to determine which patient related factors are of influence on treatment effectiveness. In short, hopefully this study can contribute to a treatment possibility for social cognition disorders for all patients with various neurological disorders. It is expected that T-ScEmo will be effective for various neurological disorders, based on previous research of Westerhof-Evers et al. (2017, 2019). Since social cognition disorders within patients with traumatic brain injury do all have the same ethiology it is expected that the treatment will show the same effects for patients with various neurological disorders. Therefore it is expected that patients will improve on social cognition, social participation and quality of life and social behaviour, that these results will last over time.

NCT ID: NCT06314607 Recruiting - Brain Tumor Clinical Trials

Genetic and Molecular Characterization of Nervous System Lesions

ONCONEUROTEK 2
Start date: March 26, 2024
Phase:
Study type: Observational

Primary and secondary brain tumors, the leading cause of death from cancer before the age of 35, represent a complex and heterogeneous group of pathologies with a generally poor prognosis. Knowledge of these tumors has made enormous strides thanks to access to biological samples, leading to a much more robust, reliable and precise histo-pronostic classification, but also, increasingly, to the identification of theranostic targets. Despite these advances, there is a real need to refine diagnostic and prognostic classification, identify the biological mechanisms involved in the formation and progression of these pathologies, develop new targeted strategies, and devise minimally invasive follow-up methods (liquid biopsies). In addition, certain non-tumoral brain lesions (e.g. malformations) can be similarly classified according to their molecular and mutational profile. This project aims to make a decisive contribution to these objectives.

NCT ID: NCT06229483 Recruiting - Brain Tumor Clinical Trials

The Effects of Intraoperative Tranexamic Acid on Perioperative Bleeding In Craniotomies

Start date: April 3, 2024
Phase: Phase 3
Study type: Interventional

The goal of this clinical trial is to test the effect of a drug called tranexamic acid (TXA) on reducing blood loss in participants undergoing surgery to remove brain tumors. The main questions it aims to answer are: 1. Does TXA 20 mg/kg IV bolus of TXA, and 1 mg/kg/hr infusion of TXA reduce the amount of estimated blood loss during surgery? 2. Does TXA 20 mg/kg IV bolus of TXA, and 1 mg/kg/hr infusion of TXA prevent re-operation, disability or death related to bleeding inside the head during and after surgery? Participants are randomized to receive 20 mg/kg IV bolus of TXA or matching placebo within 30 minutes of start of surger, and then 1 mg/kg/hr infusion of TXA or matching from the start of surgery to end of surgery. Treatment allocation is blinded. Investigator will compare the two treatment arms to see whether there are differences in the amount of blood loss during surgery and bleeding-related complications. Investigators will also monitor for any side effects of TXA.

NCT ID: NCT06199050 Recruiting - Breast Cancer Clinical Trials

The Effect of 360° Virtual Reality Movies on Fear and Anxiety

ENGAGE
Start date: June 16, 2023
Phase: N/A
Study type: Interventional

To assess the effect of web-based 360° Virtual Reality movies on fear and anxiety, The investigators would like to assess the patient-perceived level of fear and anxiety quantitatively, making use of several questionnaires.

NCT ID: NCT06180460 Recruiting - Clinical trials for Metastatic Breast Cancer

CALM: Managing Distress in Malignant Brain Cancer

Start date: November 10, 2023
Phase: N/A
Study type: Interventional

The purpose of this study is to test an empirically supported psychotherapeutic intervention, Managing Cancer and Living Meaningfully (CALM), compared to treatment as usual (TAU) in those with malignant brain cancer diagnoses.

NCT ID: NCT06087393 Recruiting - Brain Tumor Clinical Trials

CONVIVO Endomicroscopy

Start date: January 8, 2024
Phase: N/A
Study type: Interventional

Visualization of the tissue microstructure during neurosurgery using a non destructive handheld imaging technology producing a real time digital image ("optical biopsy") at cellular resolution is a novel method that holds great promise for optimization and improvement of the surgical treatment of brain pathologies, brain tumors in particular. The goal of this project is to investigate and assess the ease of use of the CONVIVO FDA cleared system in discriminating healthy and abnormal tissues during in vivo use on the brain during neurosurgery in 30 patients with a working diagnosis of intrinsic brain tumors.

NCT ID: NCT06051240 Recruiting - Clinical trials for Cognitive Impairment

Lithium Treatment to Prevent Cognitive Impairment After Brain Radiotherapy

LiBRA
Start date: February 16, 2024
Phase: Phase 2
Study type: Interventional

Randomized, placebo-controlled, double-blinded, parallel group clinical trial to investigate if 6 months of oral lithium tablets (S-lithium 0,5-1,0 mmol/l) will prevent cognitive decline after brain radiotherapy in pediatric brain tumor survivors. Primary outcome measure is Processing Speed Index (PSI) 2 years after start of study treatment.

NCT ID: NCT06038760 Recruiting - Glioblastoma Clinical Trials

Prospective Evaluation of AI R&D Tool in Adult Glioma and Other Primary Brain Tumours (PEAR-GLIO)

PEAR-GLIO
Start date: October 12, 2023
Phase:
Study type: Observational

Pear Bio has developed a 3D microtumor assay and computer vision pipeline through which the response of an individual patient's tumor to different anti-cancer regimens can be tested simultaneously ex vivo. This study will recruit patients with primary brain tumors who are due to undergo surgery. Oncologists will be blinded to treatment response on the Pear Bio tool (the assay will be run in parallel with the patient's treatment). The primary objective of this study is to establish the ex vivo model and confirm whether approved therapies exhibit their intended mechanism of action in the model. Secondary objectives include correlating test results to patient outcomes, where available.

NCT ID: NCT05989893 Recruiting - Epilepsy Clinical Trials

The Neural Code and Dynamics of the Reading Network.

Start date: August 10, 2022
Phase: N/A
Study type: Interventional

The purpose of this study is to compare organization of normal brain function as detected using Functional magnetic resonance imaging (fMRI) in normal subjects as opposed to patients with epilepsy or brain tumors, to ascribe precise anatomic labels (including Brodmann Areas) and functional significance to each region involved in cognitive processes as detected by cortical stimulation mapping (CSM) in patients with implanted subdural electrodes (SDE) or depth (sEEG) electrodes, to describe the locations of these regions in Talairach space, for a population of patients without overt structural abnormalities in these regions, to generate a spatial probability map of locations of cortical regions "essential" for these processes, to compare the loci of "crucial" language, visual, motor and cognitive sites as determined by CSM with the loci determined by a battery of tasks using fMRI for each individual and to use these data in patients undergoing intracranial electro-corticographyto determine the loci of essential, involved and uninvolved brain areas, and use sophisticated mathematical analyses of these intracranial recordings to study information flow between these areas.