Clinical Trials Logo

Brain Injuries clinical trials

View clinical trials related to Brain Injuries.

Filter by:

NCT ID: NCT06288984 Not yet recruiting - Brain Injuries Clinical Trials

Effects of rTMS on Respiratory Function and Gut Microbiota in Patients With Brain Injury

Start date: March 1, 2024
Phase: N/A
Study type: Interventional

Impaired respiratory function may occur after brain injury, and will progress to restricted respiratory dysfunction without early intervention. At present, there is a lack of effective treatment options for respiratory dysfunction. Repetitive Transcranial Magnetic Stimulation(rTMS) is a non-invasive, painless and non-invasive neuroregulatory technique. In healthy people, rTMS applied to the respiratory motor cortex induces a contralateral respiratory muscle response. However, whether rTMS can improve respiratory function in patients with brain injury remains unclear. gut microbiota can affect muscle function and mass, and animal experiments have shown that probiotics can increase skeletal muscle mass and grip strength in mice. On the other hand, studies have found that rTMS can improve the nutritional status of patients with vegetative state by regulating the structure of gut microbiota. However, it remains unclear whether rTMS can improve respiratory muscle function in patients with brain injury by regulating gut microbiota. Therefore, the investigators intend to apply rTMS to the respiratory motor cortex to observe whether rTMS can improve respiratory function and reduce the incidence of pneumonia in patients with brain injury, and to observe the role of gut microbiota in this process.

NCT ID: NCT06282965 Not yet recruiting - Clinical trials for Traumatic Brain Injury

Safety and Efficacy of Angiotensin (1-7) in Persons With Moderate to Severe Traumatic Brain Injury

ANGel T
Start date: March 2024
Phase: Phase 1/Phase 2
Study type: Interventional

The goal of this clinical trial is to test the safety of the drug Angiotensin (1-7) and learn whether it works well as a treatment in people who have suffered a moderate to severe traumatic brain injury (TBI). The main questions this trial aims to answer are: - Is Angiotensin (1-7) safe? - Does Angiotensin (1-7) improve mental functioning and reduce physical signs of brain damage in people who have suffered a moderate to severe TBI? Participants will: - Complete 21 days of study treatment consisting of a once-daily injection. - Provide blood samples. - Undergo two magnetic resonance imaging (MRI) scans of the brain. - Complete specific tasks and questionnaires that allow researchers to evaluate the participant's brain and psychological functioning. Researchers will compare three groups: two groups that receive different doses of Angiotensin (1-7) and one group that receives a look-alike treatment with no active drug. This will allow researchers to see if the drug has any negative effects and whether it improves mental functioning and physical signs of brain damage after a TBI.

NCT ID: NCT06276894 Not yet recruiting - Clinical trials for Traumatic Brain Injury

Functional Near-Infrared Spectroscopy (fNIRS) Assessing Neural Activity During Virtual Reality Walking Intervention

fNIRS
Start date: March 1, 2024
Phase: N/A
Study type: Interventional

The purpose of this study is to evaluate the safety and feasibility of using a portable neuroimaging device called functional near-infrared spectroscopy (fNIRS) to successfully analyze fNIRS data in individuals with chronic TBI during treadmill training augmented with VR.

NCT ID: NCT06264518 Not yet recruiting - Clinical trials for Traumatic Brain Injury

An Observational Exploration of Clinical Trials Targeting Traumatic Brain Injury

Start date: March 2025
Phase:
Study type: Observational

Clinical study participation has historically been heavily biased toward specific demographics. Several people will be invited to enroll in this study so that it may collect a variety of data about traumatic brain injury clinical trial experiences and identify barriers to participation as well as the causes of participants' failure or withdrawal. People with traumatic brain injury who are invited to take part in medical research will benefit from the analysis of the data.

NCT ID: NCT06262061 Not yet recruiting - Clinical trials for TBI (Traumatic Brain Injury)

Propranolol for the Treatment of Traumatic Brain Injury

Start date: March 2024
Phase: Early Phase 1
Study type: Interventional

Traumatic brain injury (TBI) is a leading cause of global disease and directly affects over 1.5 million Canadians, with 165 000 TBIs occurring yearly in Canada. Despite the burden of TBIs, there are limited treatment options available and current treatments generally focus on supportive care. The aim of TBI treatment is reduce inflammation and damage occurring after the TBI (secondary injury). Beta- blockers (BBs) are medications commonly used to block the actions of endogenous catecholamines- hormones that are thought to contribute to secondary injury within brain tissue. This reduces metabolic demand in the vulnerable, injured brain. BBs have been studied in several retrospective trials and one single-center, non- blinded randomized controlled study. These results point towards a benefit to the use of BBs in TBI but need to be confirmed in a rigorous manner before they are widely adopted. The current study aims to assess the feasibility of a single centre randomized controlled trial of BBs versus placebo to treat moderate to severe TBI. This feasibility trial will inform the planning of a large multi-center study powered to detect a difference in cognitive outcomes and mortality. It also will allow the investigators to gather biologic samples for measuring serum catecholamines and inflammatory mediators to better understand the basic science mechanisms of BBs in this patient population; and to assess the feasibility of using the Cambridge Battery to assess cognitive outcomes of trial participants.

NCT ID: NCT06253923 Not yet recruiting - Clinical trials for Traumatic Brain Injury

Study to Assess the Safety of Amantadine Hydrochloride (HCl) Intravenous (IV) Solution (MR-301) in Patients With Severe Traumatic Brain Injury (TBI).

Start date: February 28, 2024
Phase: Phase 2
Study type: Interventional

The main goal of this clinical trial is to check if the treatment is safe and well-tolerated. Researchers will compare the MR-301 active drug group with the placebo group to evaluate the safety and tolerability of the drug. Other measurements include assessing the patient's overall outcome, neurological responses, time spent in the intensive care unit, time in the hospital, and mortality. Participants will receive either MR-301 BID IV dosing or a matching placebo for a total of 3 weeks.

NCT ID: NCT06245967 Not yet recruiting - Dizziness Clinical Trials

Frequency Specific Microcurrent Therapy for Mild Traumatic Brain Injury

Start date: February 15, 2024
Phase: N/A
Study type: Interventional

Patients with mild traumatic brain injury (mTBI) may experience spontaneous recovery within 7-10 days, but some continue to exhibit symptoms such as headache, dizziness, vertigo, poor concentration, and cognitive dysfunction. Effective treatments for these symptoms are currently lacking. Frequency Specific Microcurrent(FSM) has received approval from the U.S. FDA for use in neuroinflammatory conditions. Our study aims to evaluate the efficacy of FSM by using FSM device ,IS02LCDs Stimulator (Ru Yi Health ltd. Co,Taiwan R.O.C), on symptom improvement in 52 patients with mild TBI

NCT ID: NCT06245434 Not yet recruiting - Clinical trials for Acute Brain Injury Coma

Circadian Rhythmicity During Coma Awakening

COMARHYTHM
Start date: April 15, 2024
Phase: N/A
Study type: Interventional

Acute brain injury is a major cause of admission to intensive care units, as well as of mortality and morbidity, worldwide and for all age groups. With most patients surviving these injuries thanks to recent medical advances, society is facing not only the growing burden of disability, but above all the ethical issues involved in withdrawal of life-sustaining therapies (WSLT). To resolve this dilemma, effective treatment would be necessary, but this is hampered by our limited knowledge of the pathophysiological mechanisms of the natural history of coma, from onset to recovery. A more systematic description of coma awakening using a multimodal battery in intensive care unit patients would enable us to refine the awakening and re-emergence of consciousness and define appropriate biomarkers for selecting candidates in interventional studies. The investigators hypothesize that the current postulate of successive stages (i.e. from one clinical class to the next) of coma recovery is incomplete, as it does not take into account the rhythmic nature of wakefulness. The investigators propose that the best correlate of the natural history of coma recovery is a gradual shift from the loss of physiological cycles to a circadian rhythmicity of arousal indices (behavioural and neurophysiological) and a wide amplitude of metric fluctuations in assessing content richness.

NCT ID: NCT06241482 Not yet recruiting - Clinical trials for Traumatic Brain Injury

Safety and Efficacy of Enhanced Recovery After Surgery in Neurocritical Care

Start date: May 1, 2024
Phase: N/A
Study type: Interventional

Enhanced recovery after surgery (ERAS) is a strategy of perioperative management aimed to accelerate the rehabilitation of patients through various optimized perioperative managements as well as ongoing adherence to a patient-focused, multidisciplinary, and multimodal approach. Alleviating the injury and stress caused by surgery or disease is the core principle of ERAS, which has been shown to reduce complication rates after surgery, promote patient recovery, decrease hospital length of stay and reduce costs. ERAS has been widely applied in many surgical perioperative fields, and it has achieved remarkable effects. However, there are few applications of ERAS in neurosurgery, especially in clinical trials of neurocritical care patients. Therefore, the investigators attempt to conduct the study of ERAS in neurosurgical intensive patients using a series of optimized perioperative managements that have been verified to be effective by evidence-based medicine, and to evaluate the safety and effectiveness of ERAS in neurocritical care. The aim of this study is to explore the most suitable ERAS protocols to accelerate the postoperative rehabilitation process of neurocritical care patients, and to provide more evidence-based medicine for the effectiveness and safety of ERAS in neurosurgery.

NCT ID: NCT06228391 Not yet recruiting - Clinical trials for Major Depressive Disorder

Ketamine Treatment for PTSD and MDD in TBI

Start date: March 2024
Phase: Phase 2
Study type: Interventional

The goal of this clinical trial is to examine the use of sedative ketamine to treat depression and post-traumatic stress disorder (PTSD) in Veterans with mild to moderate traumatic brain injury (TBI). The main questions it aims to answer are: - Efficacy of ketamine to reduce symptoms of depression and/or PTSD - Safety of ketamine to treat depression and/or PTSD in TBI Participants will be randomly assigned to receive either ketamine or midazolam (active placebo) twice a week for 3 weeks. During participation, subjects will be interviewed, have lab tests, and complete rating scales, and questionnaires.