Atrial Fibrillation Clinical Trial
Official title:
CReating an Optimal Warfarin Nomogram (CROWN) Trial
In this research study, the investigators are trying to find a better way to set the dose of
a common blood-thinning medication.
Patients with blood clots or a risk of blood clots (or stroke) sometimes have to take an
approved medication called warfarin. Warfarin is a commonly prescribed, approved blood
thinning medicine taken by mouth. There is a certain level of warfarin that is best for each
patient at a particular time. It is hard for a doctor to choose and maintain the right dose
of warfarin for each patient. Too much or too little warfarin in the blood can cause serious
health problems.
A "nomogram" is a tool that helps doctors decide on the right dose of warfarin. The usual
way for finding the right dose of warfarin is for doctors to take an educated guess and use
a "trial and error" approach. Patients have frequent blood tests to help doctors keep track
of how well the dose level is working.
Up until now, if a patient had good blood test results over half of the time, that was as
well as doctors could do. The purpose of this study is to see whether the investigators can
create a reliable new warfarin nomogram that will allow them to dose a patient correctly
more often, perhaps about 3 times out of 4. The nomogram the investigators are studying uses
information about a patient's health and genes to decide on the best dose of warfarin.
The investigators don't yet have a reliable, safe way to choose the correct dose. In this
study, the investigators will use a genetic blood test to try to find a better way. Genes
are the parts of each living cell that allow characteristics to be passed on from parents to
children. The investigators know that people with certain genes seem to respond to warfarin
in a certain way. From a blood sample, the investigators can look at patients' genes and try
to predict the response to the blood-thinning medication.
There will be about 500 subjects taking part in this study. They will come from
participating Partners' Hospitals, including Brigham and Women's Hospital, Massachusetts
General Hospital, Faulkner Hospital, Newton-Wellesley Hospital, Spaulding Rehabilitation
Hospital, and North Shore Medical Center. The U.S. Food and Drug Administration (FDA) has
approved warfarin for use as a blood thinner.
This is Phase 1 of a 3-phase plan in which we will ultimately test whether rapid turnaround
genetic testing can improve the safety and efficacy of warfarin anticoagulation in warfarin
naïve patients who are being newly induced and maintained on warfarin. Each of the phases
will address a specific and progressively more ambitious question.
Phase 1 will be a 500-patient cohort study to determine whether we can develop a reliable
nomogram that incorporates clinical and genetic information to maintain patients within the
target therapeutic range more often than 70% of the time, the conventional historical
benchmark for excellence in warfarin dosing.
BACKGROUND:
Warfarin was patented in 1948 and was introduced commercially in 1954. In 2004, more than 24
million prescriptions were written for warfarin in the United States alone. Warfarin
constitutes the 20th most frequently prescribed drug in the United States. This is
remarkable, because few drugs have had a life cycle as long as warfarin, and even fewer can
claim an increase in use more than 50 years following introduction.
Warfarin is a Vitamin K antagonist. Gamma-carboxylation of vitamin K is crucial for
coagulation factors II, VII, IX, and X to function properly, as well as antithrombotic
endogenous Protein C and Protein S. Gamma-carboxylation of vitamin K allows these clotting
proteins to bind calcium at phospholipid surfaces upon which coagulation occurs. Warfarin
and other vitamin K antagonists interfere with vitamin K and cause the liver to synthesize
nonfunctional coagulation factors.
Warfarin is almost completely absorbed by the gastrointestinal mucosa. It is metabolized in
the liver by the Cytochrome P450 system. The kidney eliminates largely inactive metabolites.
Warfarin anticoagulation is prescribed to prevent stroke and venous thromboembolism. Optimal
dosing requires achieving and maintaining a target range International Normalized Ratio
(INR). The INR itself is a prothrombin time that is standardized according to the type of
thromboplastin reagent used by the coagulation laboratory. Each thromboplastin reagent has a
designated International Sensitivity Index. The formula used to calculate the INR is shown
below:
The target INR for most indications, including atrial fibrillation, DVT, and pulmonary
embolism, is usually between 2.0 and 3.0.
Excessive dosing is characterized by an elevated INR and precipitates hemorrhage, including
stroke due to intracranial bleeding. To minimize the risk of intracranial hemorrhage, it is
important to maintain a maximum INR level of 3.0. When the INR exceeds 3.0, the risk of
intracranial bleeding increases exponentially.
Inadequate dosing, associated with a subtherapeutic INR, predisposes to stroke due to
thromboembolism and to DVT or pulmonary embolism. For example, to prevent a thrombotic
stroke in patients with atrial fibrillation, it is important to maintain an INR of at least
2.0.
The most vulnerable period for thrombosis and hemorrhage due to warfarin is during the
initiation phase of anticoagulation, when optimal dosing is least certain. Adverse event
rates are highest during this vulnerable period, which is generally considered to persist
for at least 3 months. Patients who have not been previously exposed to warfarin are most
vulnerable because there is no individual history to guide the clinician on an optimal
initiation dose for those particular patients.
Dosing nomograms work poorly. Trial and error predominates as the method of dosing warfarin.
Warfarin is virtually the only contemporary drug prescribed using trial and error
methodology.
Various warfarin initiation regimens have been attempted, but none are in common use. In
1984, Fennerty proposed an every 16-hour dosing initiation nomogram for patients with venous
thromboembolism whose average age was 52 years. This nomogram never gained wide support
because of the awkward dosing interval and because it had been used in a patient population
much younger than the average population of patients who take warfarin. In 1998, the
"modified Fennerty" nomogram was introduced and dosed patients with warfarin every 24 hours.
The nomogram enrolled an older population, average age of 78 years. However, 35% of these
patients had excessively high INRs that exceeded 4.0 within the first 4 days of warfarin
initiation.
Many clinical factors predispose to an excessively high INR: advanced age, abnormal liver
function, decreased vitamin K intake because of poor nutrition or poor appetite, diarrhea,
antibiotics, certain other concomitant medications, alcohol in binges, and perhaps changes
in warfarin preparation (substituting one generic preparation for another or interchanging
generic with brand-name Coumadin®). The most common reason for abnormally low INRs is intake
of high amounts of vitamin K from green leafy vegetables, certain drug-warfarin
interactions, or failure to take warfarin appropriately.
ADVANCES IN GENETICS:
Genotyping patients at the onset of warfarin anticoagulation may allow more precise dosing.
This may translate into fewer major bleeding and clotting events as well as fewer
out-of-target-range INRs, which serve as a surrogate for bleeding and clotting
complications. During the first several weeks following prescription of warfarin, INR
laboratory tests are obtained frequently, often twice weekly. Better predictive assessment
of the optimal dose will decrease laboratory costs and improve convenience for patients.
Cytochrome P450 2C9 genotyping can identify mutations associated with impaired warfarin
metabolism. The CYP2C9 genotype accounts for about 10% of warfarin dose variance. Vitamin K
receptor polymorphism testing can identify whether patients require low, intermediate, or
high doses of warfarin. Five common vitamin K receptor gene haplotypes account for about an
additional 25% of warfarin dose variance.
Until now, the major drawback in applying screening for CYP2C9 polymorphisms to warfarin
dosing and VKORC1 genotyping has been slow turnaround time. However, the HPCGG will be able
in the Nomogram Development Trial to offer turnaround within 24-48 hours. This rapid
turnaround time will allow initial immediate anticoagulation with once or twice daily
injectable agents for several days. Therefore, prior to the initiation of warfarin, there
will be sufficient time for the genetic information to be received and implemented by the
clinical team.
The human cytochrome P450 (CYP) superfamily comprises 57 genes. These genes code for a
myriad of enzymatic reactions. The cytochrome P450 CYP2C9 is responsible for metabolism of
the S enantiomer of warfarin. Two allelic variants, CYP2C9*2 and CYP2C9*3, differ from the
wild type CYP2C9*1 by a single amino acid substitution. The allelic variants are associated
with impaired hydroxylation of S-warfarin.
A retrospective cohort study of 200 patients receiving warfarin dosed by anticoagulation
clinics suggested that the CYP2C9*2 and CYP2C9*3 polymorphisms are associated with an
increased risk of excessive anticoagulation and of bleeding events.
At the Brigham and Women's Hospital Anticoagulation Service, we identified 73 patients for
CYP2C9 genotyping, which we assessed with PCR amplification and restriction enzyme digestion
analysis of DNA isolated from circulating leukocytes. The CYP2C9 polymorphisms independently
predicted low warfarin requirements after adjusting for body mass index, age, acetaminophen
use, and race. At least one polymorphism was present in every patient requiring 1.5 mg or
less of daily warfarin. We did find higher rates of excessive anticoagulation but did not
observe higher bleeding rates in patients with these polymorphisms.
To date, only one prospective study has been published on warfarin dosing based upon
cytochrome P450 2C9 genotyping. It was a negative study that failed to prove the hypothesis
that genotyping would lead to better control of warfarin dosing. 48 orthopedic surgery
patients were studied with genotyping and screening for nongenetic factors that might affect
warfarin dosing and bleeding risk. The warfarin dosing algorithms based upon the genetic
screening led to achievement of a stable and therapeutic INR in both the wild type group and
the CYP2C9 variant groups with a similar time course. Nevertheless, despite
pharmacogenetics-based dosing, patients with variants were at higher risk for excessive
anticoagulation, defined as an INR greater than 4.0.
This failed study emphasizes the pivotal importance of a comprehensive nomogram development
phase prior to initiating a randomized controlled trial. This trial also demonstrates the
need to consider other factors that affect the INR and warfarin dose: advanced age,
underlying comorbidities and thrombotic disposition, abnormal liver function, inadequate or
excessive vitamin K intake, altered vitamin K metabolism (e.g., diarrhea or antibiotics),
alcohol and drug-food interactions, and changes in warfarin preparation (switching among
different generics or switching to or from brand name Coumadin®). The most important lesson
from this cohort study is that to decrease clinical adverse events due to warfarin, it is
first necessary to develop a warfarin nomogram that is superior than the current practice of
educated guesses and trial and error.
Rieder and colleagues have identified 10 non-coding single- nucleotide polymorphisms (SNPs)
in the vitamin K epoxide reductase complex 1 (VKORC1) gene that fall into five major
haplotypes. Two of these haplotypes, A and B, can be used to determine whether patients
require low (AA, 2.7 mg/day), intermediate (AB, 4.9 mg/day), or high (BB, 6.2 mg/day) doses
of drug. The haplotypes differ according to racial distribution. These haplotypes are
responsible for 25% of the variance in dose. Therefore, a combination of cytochrome P450 and
VKORC1 genotyping will facilitate optimal warfarin dosing.
OBJECTIVE:
Primary Objective:
We will develop a nomogram for warfarin dosing that uses rapid turnaround genetic testing
and monthly nomogram modification (if necessary) to achieve effective and safe warfarin
induction and maintenance. More than 70% of the time, we will maintain warfarin naïve
patients within the target therapeutic range. The percent of time in the therapeutic range
will be analyzed beginning 2 weeks after initiation of warfarin. Analyses will be stratified
by the indication for anticoagulation.
We will obtain Informed Consent for exploratory genetic testing of the sampled DNA, in
addition to cytochrome P450 2C9 and VKORC1 alleles. This flexible approach will permit us to
add additional promising tests that emerge and so that we can modify the nomogram to make it
even more effective in achieving the target range for the INR.
PLANS:
Genetic Testing:
1. Detect known alleles of cytochrome P450 and Vitamin K epoxide reductase complex 1
(VKORC1).
2. Collect 5 ml of blood into EDTA (lavender top) tubes.
3. DNA will be processed using the ROCHE MagnaPure automated prep system.
Patient Population:
Warfarin naïve patients undergoing initiation of warfarin anticoagulation at participating
Partners anticoagulation clinics, including Brigham and Women's Hospital, Massachusetts
General Hospital, North Shore Medical Center, Faulkner Hospital, Spaulding Rehabilitation
Hospital, and Newton Wellesley Hospital.
Overview and Timeline:
We will enroll patients over 9 months, follow each patient for 3 months with twice weekly
coagulation testing of the prothrombin time standardized to the International Normalized
Ratio, and adjust monthly the nomogram (if necessary) to improve the fit with emerging data
from the cohort.
;
Allocation: Non-Randomized, Endpoint Classification: Safety/Efficacy Study, Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Treatment
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05654272 -
Development of CIRC Technologies
|
||
Completed |
NCT04571385 -
A Study Evaluating the Efficacy and Safety of AP30663 for Cardioversion in Participants With Atrial Fibrillation (AF)
|
Phase 2 | |
Terminated |
NCT04115735 -
His Bundle Recording From Subclavian Vein
|
||
Completed |
NCT05366803 -
Women's Health Initiative Silent Atrial Fibrillation Recording Study
|
N/A | |
Completed |
NCT02864758 -
Benefit-Risk Of Arterial THrombotic prEvention With Rivaroxaban for Atrial Fibrillation in France
|
||
Recruiting |
NCT05442203 -
Electrocardiogram-based Artificial Intelligence-assisted Detection of Heart Disease
|
N/A | |
Completed |
NCT05599308 -
Evaluation of Blood Pressure Monitor With AFib Screening Feature
|
N/A | |
Completed |
NCT03790917 -
Assessment of Adherence to New Oral anTicoagulants in Atrial Fibrillation patiEnts Within the Outpatient registrY
|
||
Enrolling by invitation |
NCT05890274 -
Atrial Fibrillation (AF) and Electrocardiogram (EKG) Interpretation Project ECHO
|
N/A | |
Recruiting |
NCT05316870 -
Construction and Effect Evaluation of Anticoagulation Management Model in Atrial Fibrillation
|
N/A | |
Recruiting |
NCT05266144 -
Atrial Fibrillation Patients Treated With Catheter Ablation
|
||
Not yet recruiting |
NCT06023784 -
The Impact of LBBAP vs RVP on the Incidence of New-onset Atrial Fibrillation in Patients With Atrioventricular Block
|
N/A | |
Recruiting |
NCT05572814 -
Transform: Teaching, Technology, and Teams
|
N/A | |
Recruiting |
NCT04092985 -
Smart Watch iECG for the Detection of Cardiac Arrhythmias
|
||
Completed |
NCT04087122 -
Evaluate the Efficiency Impact of Conducting Active Temperature Management During Cardiac Cryoablation Procedures
|
N/A | |
Completed |
NCT06283654 -
Relieving the Emergency Department by Using a 1-lead ECG Device for Atrial Fibrillation Patients After Pulmonary Vein Isolation
|
||
Recruiting |
NCT05416086 -
iCLAS™ Cryoablation System Post-Market Clinical Follow-up (PMCF) Study
|
N/A | |
Completed |
NCT05067114 -
Solutions for Atrial Fibrillation Edvocacy (SAFE)
|
||
Completed |
NCT04546763 -
Study Watch AF Detection At Home
|
||
Completed |
NCT03761394 -
Pulsewatch: Smartwatch Monitoring for Atrial Fibrillation After Stroke
|
N/A |