Acute Myocardial Infarction Clinical Trial
— EMERALD IIOfficial title:
Exploring the Mechanism of Plaque Rupture in Acute Coronary Syndrome Using Coronary CT Angiography and Computational Fluid Dynamics II (EMERALD II) Study
Verified date | August 2022 |
Source | Seoul National University Hospital |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Observational [Patient Registry] |
The EMERALD II study is a multinational, multicenter, and retrospective study. ACS patients who underwent CCTA from 1 months to 3 years prior to the event will be retrospectively identified. Plaques in the non-culprit vessels will be regarded as a primary control group.
Status | Active, not recruiting |
Enrollment | 429 |
Est. completion date | December 31, 2022 |
Est. primary completion date | September 30, 2022 |
Accepts healthy volunteers | No |
Gender | All |
Age group | N/A and older |
Eligibility | Inclusion Criteria: 1. Patients who presented with ACS* and underwent invasive coronary angiography with identifiable culprit lesion 2. The patients who underwent coronary CT angiography, regardless of the reason (for example, routine healthcare check-up, or evaluation for stable angina or atypical chest pain) prior to the acute event. 3. Time limit of CCTA: 1 months ~ 3 years prior to the event. - Definition of ACS: A. The patients with acute myocardial infarction should have cardiac enzyme elevation and identified culprit lesion confirmed by invasive coronary angiography, IVUS, or OCT. B. The patients with unstable angina should have evidence of plaque rupture, which includes at least one of the following: (1) the presence of plaque rupture or haziness including thrombus at invasive coronary angiography, (2) angiographic stenosis =90%, or (3) the evidence of rupture confirmed by IVUS or OCT. Exclusion criteria for Patient enrollment 1. Patients with ACS without clear evidence of culprit lesion 2. Patients with stents in two or more vessel territories prior to CCTA 3. Poor quality of CCTA which is unsuitable for plaque and CFD analysis 4. Patients with ACS culprit lesion in a stented segment 5. Patients with previous history of coronary artery bypass graft surgery 6. Patients with revascularization after CCTA and before ACS event (*Patients with elective PCI for 1 vessel within 3 month after CCTA can be enrolled. 7. Secondary ACS due to other general medical conditions, such as sepsis, arrhythmia, bleeding, etc. 8. Patients with unstable angina without evidence of plaque rupture Additional exclusion criteria for Computational Fluid Dynamics 9. Poor quality CCTA images unsuitable for CFD and plaque analysis 10. No unprocessed CCTA data |
Country | Name | City | State |
---|---|---|---|
Korea, Republic of | Seoul National University Hospital | Seoul |
Lead Sponsor | Collaborator |
---|---|
Seoul National University Hospital | Aarhus University Hospital, Aichi Medical University, Chosun University Hospital, Chungnam National University Hospital, Ehime University Graduate School of Medicine, Emory University, Gifu Heart Center, Imperial College London, Inje University Ilsan Paik Hospital, Keimyung University Dongsan Medical Center, Kobe University Hospital, Leiden University, Loyola University, Monash Heart, Monzino Cardiology Center, MOUNT SINAI HOSPITAL, National Cerebral and Cardiovascular Center, Odense University Hospital, OLV Hospital, Oxford University Hospital, Saiseikai Kumamoto Hospital, Semmelweis University, Seoul National University Bundang Hospital, Seoul National University Hospital Healthcare System Gangnam Center, Shin Koga Hospital, St. Luke's International Hospital, St. Mary's hostpital, Tokai University, Tokyo Medical Dental University, Tokyo Medical University Hachioji Medical Center, Toyohashi Heart Center, Tsuchiura Kyodo Hospital, Ulsan Hospital, Ulsan University Hospital, University of British Columbia, University of Milan, Wakayama Medical University, Weil Cornell Medical College, West Penn Allegheny Health System |
Korea, Republic of,
Alimohamadi Y, Sepandi M. Considering the design effect in cluster sampling. J Cardiovasc Thorac Res. 2019;11(1):78. doi: 10.15171/jcvtr.2019.14. Epub 2019 Feb 17. — View Citation
Chang HJ, Lin FY, Lee SE, Andreini D, Bax J, Cademartiri F, Chinnaiyan K, Chow BJW, Conte E, Cury RC, Feuchtner G, Hadamitzky M, Kim YJ, Leipsic J, Maffei E, Marques H, Plank F, Pontone G, Raff GL, van Rosendael AR, Villines TC, Weirich HG, Al'Aref SJ, Baskaran L, Cho I, Danad I, Han D, Heo R, Lee JH, Rivzi A, Stuijfzand WJ, Gransar H, Lu Y, Sung JM, Park HB, Berman DS, Budoff MJ, Samady H, Shaw LJ, Stone PH, Virmani R, Narula J, Min JK. Coronary Atherosclerotic Precursors of Acute Coronary Syndromes. J Am Coll Cardiol. 2018 Jun 5;71(22):2511-2522. doi: 10.1016/j.jacc.2018.02.079. — View Citation
Choi G, Lee JM, Kim HJ, Park JB, Sankaran S, Otake H, Doh JH, Nam CW, Shin ES, Taylor CA, Koo BK. Coronary Artery Axial Plaque Stress and its Relationship With Lesion Geometry: Application of Computational Fluid Dynamics to Coronary CT Angiography. JACC Cardiovasc Imaging. 2015 Oct;8(10):1156-1166. doi: 10.1016/j.jcmg.2015.04.024. Epub 2015 Sep 9. — View Citation
Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation of a multivariable prognostic model: a resampling study. Stat Med. 2016 Jan 30;35(2):214-26. doi: 10.1002/sim.6787. Epub 2015 Nov 9. — View Citation
Koskinas KC, Ughi GJ, Windecker S, Tearney GJ, Räber L. Intracoronary imaging of coronary atherosclerosis: validation for diagnosis, prognosis and treatment. Eur Heart J. 2016 Feb 7;37(6):524-35a-c. doi: 10.1093/eurheartj/ehv642. Epub 2015 Dec 11. Review. — View Citation
Lee JM, Choi G, Hwang D, Park J, Kim HJ, Doh JH, Nam CW, Na SH, Shin ES, Taylor CA, Koo BK. Impact of Longitudinal Lesion Geometry on Location of Plaque Rupture and Clinical Presentations. JACC Cardiovasc Imaging. 2017 Jun;10(6):677-688. doi: 10.1016/j.jcmg.2016.04.012. Epub 2016 Sep 21. — View Citation
Lee JM, Choi G, Koo BK, Hwang D, Park J, Zhang J, Kim KJ, Tong Y, Kim HJ, Grady L, Doh JH, Nam CW, Shin ES, Cho YS, Choi SY, Chun EJ, Choi JH, Nørgaard BL, Christiansen EH, Niemen K, Otake H, Penicka M, de Bruyne B, Kubo T, Akasaka T, Narula J, Douglas PS, Taylor CA, Kim HS. Identification of High-Risk Plaques Destined to Cause Acute Coronary Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics. JACC Cardiovasc Imaging. 2019 Jun;12(6):1032-1043. doi: 10.1016/j.jcmg.2018.01.023. Epub 2018 Mar 14. Erratum in: JACC Cardiovasc Imaging. 2019 Nov;12(11 Pt 1):2288-2289. — View Citation
Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U. Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol. 2014 Jul;11(7):390-402. doi: 10.1038/nrcardio.2014.60. Epub 2014 Apr 22. Review. — View Citation
Motoyama S, Ito H, Sarai M, Kondo T, Kawai H, Nagahara Y, Harigaya H, Kan S, Anno H, Takahashi H, Naruse H, Ishii J, Hecht H, Shaw LJ, Ozaki Y, Narula J. Plaque Characterization by Coronary Computed Tomography Angiography and the Likelihood of Acute Coronary Events in Mid-Term Follow-Up. J Am Coll Cardiol. 2015 Jul 28;66(4):337-46. doi: 10.1016/j.jacc.2015.05.069. — View Citation
Obuchowski NA, McClish DK. Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices. Stat Med. 1997 Jul 15;16(13):1529-42. — View Citation
Park JB, Choi G, Chun EJ, Kim HJ, Park J, Jung JH, Lee MH, Otake H, Doh JH, Nam CW, Shin ES, De Bruyne B, Taylor CA, Koo BK. Computational fluid dynamic measures of wall shear stress are related to coronary lesion characteristics. Heart. 2016 Oct 15;102(20):1655-61. doi: 10.1136/heartjnl-2016-309299. Epub 2016 Jun 14. — View Citation
Prati F, Romagnoli E, Gatto L, La Manna A, Burzotta F, Ozaki Y, Marco V, Boi A, Fineschi M, Fabbiocchi F, Taglieri N, Niccoli G, Trani C, Versaci F, Calligaris G, Ruscica G, Di Giorgio A, Vergallo R, Albertucci M, Biondi-Zoccai G, Tamburino C, Crea F, Alfonso F, Arbustini E. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome: the CLIMA study. Eur Heart J. 2020 Jan 14;41(3):383-391. doi: 10.1093/eurheartj/ehz520. Erratum in: Eur Heart J. 2020 Jan 14;41(3):393. — View Citation
Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, Timmins LH, Quyyumi AA, Giddens DP. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 2011 Aug 16;124(7):779-88. doi: 10.1161/CIRCULATIONAHA.111.021824. Epub 2011 Jul 25. — View Citation
Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys PW; PROSPECT Investigators. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011 Jan 20;364(3):226-35. doi: 10.1056/NEJMoa1002358. Erratum in: N Engl J Med. 2011 Nov 24;365(21):2040. — View Citation
Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013 Jun 4;61(22):2233-41. doi: 10.1016/j.jacc.2012.11.083. Epub 2013 Apr 3. Review. — View Citation
Williams MC, Kwiecinski J, Doris M, McElhinney P, D'Souza MS, Cadet S, Adamson PD, Moss AJ, Alam S, Hunter A, Shah ASV, Mills NL, Pawade T, Wang C, Weir McCall J, Bonnici-Mallia M, Murrills C, Roditi G, van Beek EJR, Shaw LJ, Nicol ED, Berman DS, Slomka PJ, Newby DE, Dweck MR, Dey D. Low-Attenuation Noncalcified Plaque on Coronary Computed Tomography Angiography Predicts Myocardial Infarction: Results From the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation. 2020 May 5;141(18):1452-1462. doi: 10.1161/CIRCULATIONAHA.119.044720. Epub 2020 Mar 16. — View Citation
Yang S, Koo BK, Hoshino M, Lee JM, Murai T, Park J, Zhang J, Hwang D, Shin ES, Doh JH, Nam CW, Wang J, Chen S, Tanaka N, Matsuo H, Akasaka T, Choi G, Petersen K, Chang HJ, Kakuta T, Narula J. CT Angiographic and Plaque Predictors of Functionally Significant Coronary Disease and Outcome Using Machine Learning. JACC Cardiovasc Imaging. 2021 Mar;14(3):629-641. doi: 10.1016/j.jcmg.2020.08.025. Epub 2020 Nov 25. — View Citation
Yang S, Koo BK, Narula J. Interactions Between Morphological Plaque Characteristics and Coronary Physiology: From Pathophysiological Basis to Clinical Implications. JACC Cardiovasc Imaging. 2022 Jun;15(6):1139-1151. doi: 10.1016/j.jcmg.2021.10.009. Epub 2021 Dec 15. Review. — View Citation
* Note: There are 18 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | discrimination index of prediction model | discrimination index of prediction model | 1 months - 3 years |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT04451967 -
Acute Myocardial Infarction Study in Northeastern China
|
||
Completed |
NCT05974397 -
Nationwide Trends in Incidence, Healthcare Utilization, and Mortality in Hospitalized Acute Myocardial Infarction Patients in Taiwan
|
||
Not yet recruiting |
NCT04072081 -
Drug-coated Balloon Versus Drug-eluting Stent in the Treatment of Coronary Artery Lesions in STEMI Patients in De Novo Coronary Lesions
|
N/A | |
Recruiting |
NCT03940443 -
Differences in Mortality and Morbidity in Patients Suffering a Time-critical Condition Between GEMS and HEMS
|
||
Recruiting |
NCT03707626 -
Collateral Circulation to LAD and Wellens Sign
|
||
Completed |
NCT02669810 -
EXCELLENT (EXpanded CELL ENdocardiac Transplantation)
|
Phase 2 | |
Not yet recruiting |
NCT04104048 -
Short Term Outcome of Primary Precutaneous Coronary Intervention in Ostial Versus Non Ostial Culprit Proximal Left Anterior Descending Artery Acute Myocardial Infraction
|
||
Active, not recruiting |
NCT02915107 -
The SORT OUT IX STEMI OCT Trial
|
N/A | |
Completed |
NCT02896543 -
The Relationship of Change of Dendritic Cells Fractalkine and P-selectin Patients With Acute Myocardial Infarction
|
N/A | |
Completed |
NCT02490969 -
Copeptin Registry (proCORE) Biomarkers in Cardiology (BIC)-19
|
N/A | |
Withdrawn |
NCT01901471 -
Cyclosporine in Acute Myocardial Infarction Complicated by Cardiogenic Shock
|
Phase 2 | |
Completed |
NCT02531165 -
Platelet Inhibition After Pre-hospital Ticagrelor Using Fentanyl Compared to Morphine in Patients With ST-segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention
|
N/A | |
Completed |
NCT02312336 -
A Pilot Study of Transcoronary Myocardial Cooling
|
N/A | |
Recruiting |
NCT02071342 -
Study of ABSORB Stent in Acute Myocardial Infarction
|
N/A | |
Terminated |
NCT01972126 -
MAGNetic QRS-Fragmentation in Patients With Myocardial InfarcTion and Moderately RedUceD Ejection Fraction
|
N/A | |
Completed |
NCT02070913 -
COOL-AMI EU Case Series Clinical Study
|
||
Withdrawn |
NCT01678339 -
Sicilian Administrative Data Base Study in Acute Coronary Syndrome Patients
|
N/A | |
Completed |
NCT01887080 -
Effects of Microcurrent in a Cardiovascular Rehabilitation Home-based Program
|
N/A | |
Completed |
NCT01216995 -
Safety and Efficacy of Adipose Derived Regenerative Cells (ADRCs) Delivered Via the Intracoronary Route in the Treatment of Patients With ST-elevation Acute Myocardial Infarction (AMI)
|
Phase 2 | |
Completed |
NCT01627457 -
Heart Cycle Prestudy
|
N/A |