Clinical Trials Logo

Clinical Trial Details — Status: Active, not recruiting

Administrative data

NCT number NCT06071091
Other study ID # APHP210091
Secondary ID 2022-A00570-43
Status Active, not recruiting
Phase N/A
First received
Last updated
Start date November 8, 2023
Est. completion date August 1, 2027

Study information

Verified date January 2024
Source Assistance Publique - Hôpitaux de Paris
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Clot extraction failure during mechanical thrombectomy is a major concern in the management of acute ischemic stroke related to large vessel occlusions. Indeed, it can occur in up to 10 to 30% of cases and, therefore, is associated with a very poor prognosis. These refractory occlusions frequently occur when an underlying intracranial atherosclerotic disease is present. Thus, one of the most promising rescue technique consists of placing a permanent intracranial stent, under dual antiplatelet therapy over the target refractory occlusion. This strategy is well studied in coronary occlusions where the atheroscotic mechanism is highly prevalent. However, as the ischemiated brain is at much higher risk of hemorrhagic complications, such strategy entails a greater risk. This raises the question of whether such risk is worth the reward of obtaining reperfusion. The investigators designed this randomized study in order to evaluate whether a strategy combining rescue pemanent intracranial stenting with the best medical treatment is superior to the best medical treatment alone in acute refractory large vessel occlusions.


Description:

These past recent years, mechanichal thrombectomy has become the standard treatment for acute ischemic strokes due to large vessel occlusions. Mechanical thrombectomy failure occurs in about 10 to 30% of cases with disastrous consequences for these patients. Indeed, reperfusion failures are associated with 30.5% mortality rates and only 21% of all patients are able to achieve functional independence at 3 months. In order to treat these refractory large vessel occlusions many techniques and devices have been developped. Rescue Intracranial Stenting (RIS) is the most studied technique and the most promising one. However, RIS requires strong antithrombotic medications to ensure stent patency, which may increase the risk of hemorrhagic complications. The investigators recently performed a meta-analysis of observational data, that showed that RIS in refractory large vessel occlusions allowed significant improvements in functional outcome at 3 months. The rate of good functional outcome at 3 months went from 21% in the control group (no RIS) to 43% in the RIS group. Mortality was also significantly reduced from 30.5% (control group) to 18.8% in the RIS group. Furthermore, RIS did not increase the rate of symptomatic intracranial hemorrhage. Of course, this meta-analysis is only based on observational data and needs to be confirmed in a randomized trial to bring the highest level of evidence. Refractory large vessel occlusions are commonly caused by an underlying intracranial atherosclerotic plaque. Since the SAMMPRIS trial, most of the indications for the endovascular treatment of intracranial atherosclerotic stenoses have been removed. Nevertheless, there are subsets of patients who actually benefit from intracranial stenting such as patients with refractory large vessel occlusions or patients with hemodynamically significant stenoses. As such, the PISTAR trial could be a way of validating intracranial stenting in this indication. All patients admitted for a mechanical thrombectomy will be screened before the procedure. If the patient fulfills the preoperative elligibility criteria, she/he will be informed of the possibility of being included in case of a refractory occlusion. If the patients' clinical state does not allow her/him to give informed consent, she/he can still be included using an emergency consent procedure. Consents to pursue the study will be sought as soon as possible, from the patient or her/his trusted relative. If the patient meets all remaining elligibility criteria during the mechanical thrombectomy in particular if the occlusion is considered as refractory, she/he can be included and randomized. Randomization will be performed using a minimization procedure based on the recruiting center, the administration of IV thrombolysis and the location of the occlusion (anterior versus posterior circulation). The randomzation will be centralized using an online e-crf platform. The patient can be randomized in one of the two following arms - Intervention arm : RIS + best medical treatment In this arm, a dedicated antithrombotic protocol will be initiated before the deployment of the stent. The choice of antithrombotics and the need to perform additional endovascular manœuvres such as balloon angioplasty will be left at the operator's discretion. A standard protocol for antithrombotics is proposed. - Control arm : best medical treatment with no additional thrombectomy passes In this arm, the procedure is stopped and a last control angiogram is performed to confirm the absence of reperfusion. Any additional medical treatment is allowed. Follow up visits will be performed immediately after the procedure (V0), at 24hrs (V1), 72hs (V2) and 1 month (V3). The end-research visit will be performed at 3 months (+/- 15 days) and a remote safety visit will be performed at 6 months.


Recruitment information / eligibility

Status Active, not recruiting
Enrollment 346
Est. completion date August 1, 2027
Est. primary completion date February 1, 2027
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Age>18 years - Acute ischemic stroke secondary to an occlusion of the internal carotid artery termination OR the 1st or 2nd segment of the middle cerebral artery OR the basilar artery and/or the 4th segment of the vertebral artery radiologically proven (CT Angiography or angio-MRI) - Patient within the authorised timeframe for a MT, according to the AHA/ASA 2019 grade I recommendations - Refractory intracranial large vessel occlusion defined as : Persistent arterial occlusion (mTICI 0 or I) after a minimum of 3 mechanical thrombectomy passes using direct aspiration or a stent retriever OR Early arterial reocclusion (<10 minutes) after at least one pass OR Underlying stenosis (estimated between 70 and 99%) - ASPECT Score for CT or DWI-ASPECTS for MRI or pc(-DWI)- ASPECTS (posterior circulation) = 5 - Independent patient before stroke (mRS 0-2) - Patient's or her/his trusted relative's consent or emergency procedure consent Exclusion Criteria: - Proximal intracranial vascular occlusion not confirmed on angiography - Intracranial bleeding <3 months or intracranial bleeding during TM procedure prior to inclusion - Contraindication to a dual antiplatelet therapy - Mechanical thrombectomy procedure requiring carotid or vertebral arterial access by direct puncture - Proof of significant ischemic lesions in a vascular territory not affected by the occlusion - Proven allergy to iodinated contrast material - Patient known for severe renal impairment with creatinine clearance < 30ml/min - Pregnant or breastfeeding women - Tandem occlusion (defined as the association of an intracranial occlusion to a cervical steno-occlusive lesion on the same arterial axis that needs additional endovascular manœuvers for the cervical lesion) - Major comorbidities that could hinder the improvement or the follow up of the patient or the benefit of the intervention - Unaffiliation to the French Social Security system - Patient under juridic protection - Patient participating in another interventional trial

Study Design


Related Conditions & MeSH terms


Intervention

Device:
Intracranial stenting
In order to promote the efficacy of the stent to reopen the target vessel, there are two requirments prior stenting: First, balloon angioplasty can be performed at operators' discretion based on angiographic findings. Second, a dual antiplatelet therapy protocol is considered essential to maintain stent patency, and therefore should be introduced before stent implantation whenever possible. Permanent Intracranial can then be performed according to the standard technique: An autoexpandable intracranial stent (Neuroform Atlas 4x24mm) is deployed though a dedicated microcatheter over the target refractory occlusion The only stent system allowed is the Neuroform Atlas 4x24mm (Stryker Neurovascular) The anti-thrombotic drugs used, their route of administration, the choice of navigation equipment are left to the discretion of the team in charge of the patient. A standardized anti-thrombotic protocol will be proposed as an indication.
Other:
Optimal medical care, without additional endovascular procedures
The control group represents the standard therapeutic strategy for refractory vascular occlusions, which consists of stopping the procedure without performing any additional mechanical thrombectomy attempts. In this group, the procedure will be stopped after randomization and a control seriography will be performed to confirm the persistent nature of the intracranial occlusion. The patient will benefit from the best medical care available, which may include any medical treatment including a dual anti-platelet therapy if the therapeutic team deems it necessary (Standard medical care may also include (non-exhaustive list): Nursing Nursing care Symptomatic treatments: analgesics for example Systematic clinical monitoring and control imaging if necessary Rehabilitation if necessary)

Locations

Country Name City State
France CHU Amiens Amiens
France CHU Bordeaux (Pellegrin Hospital) Bordeaux
France Henri-Mondor Hospital (APHP) Créteil
France Henri-Mondor Hospital (APHP) Créteil
France Bicêtre Hospital (AP-HP) Le Kremlin-Bicêtre
France Bicêtre Hospital (APHP) Le Kremlin-Bicêtre
France CHU Lille (Roger Salengro Hospital) Lille
France CHU Montpellier - Gui de Chauliac Montpellier
France CHRU de Nancy Nancy
France APHP • Assistance Publique des Hôpitaux de Paris, Pitié-Salpêtrière hospital Paris
France Lariboisière Hospital (APHP) Paris
France CHU Poitiers Poitiers
France Foch Hospital Suresnes

Sponsors (1)

Lead Sponsor Collaborator
Assistance Publique - Hôpitaux de Paris

Country where clinical trial is conducted

France, 

Outcome

Type Measure Description Time frame Safety issue
Primary Rate of independent patients Rate of independent patients at 3 months, defined as a modified Rankin Scale (mRS) 0-2, evaluated by a trained health professional, blinded to the randomization arm.
Min=0 ; Max=6 (lower is better)
3 months
Secondary Mortality Mortality rate at 6 months 6 months
Secondary Excellent functional outcome Rate of excellent functional prognosis defined as a modified Rankin Scale (mRS) score of 0-1 at 3 months Min=0 ; Max=6 (lower is better) 3 months
Secondary modified Rankin Scale (mRS) Distribution of mRS scores at 3 months Min=0 ; Max=6 (lower is better) 3 months
Secondary Successful reperfusion Successful reperfusion rate (Score modified Thrombolysis In Cerebral Infarction [mTICI] =IIb) Min=0 ; Max=3 (higher is better) End of procedure (up to 4 hours)
Secondary Excellent reperfusion Excellent reperfusion rate (defined as modified Thrombolysis In Cerebral Infarction [mTICI] score =IIc) Min=0 ; Max=3 (higher is better) End of procedure (up to 4 hours)
Secondary Symptomatic ischemic recurrence Rate of symptomatic ischemic recurrence (=4 points of National Institutes of Health Stroke Scale (NIHSS) compared to the lowest NIHSS score during management) certified by imaging within 3 months.
Min=0 ; Max=42 (lower is better)
3 months
Secondary Rate of patients requiring a new mechanical thrombectomy Rate of patients requiring a new mechanical thrombectomy within the group of patients with symtomatic ischemic recurrence 3 months
Secondary Neurologic recovery Neurologic recovery at 24 hours, according to the National Institutes of Health Stroke Scale (NIHSS) score as compared to initial NIHSS score Min=0 ; Max=42 (lower is better) 24 hours
Secondary Neurologic recovery Neurologic recovery at 72 hours, according to the National Institutes of Health Stroke Scale (NIHSS) score as compared to initial NIHSS score Min=0 ; Max=42 (lower is better) 72 hours
Secondary Periprocedural time (time between arterial puncture and successful reperfusion (if obtained)) Time between arterial puncture and successful reperfusion (if obtained) End of procedure (up to 4 hours)
Secondary Periprocedural time (Time between onset of symptoms (or "last seen normal") and successful reperfusion (if obtained)) Time between onset of symptoms (or "last seen normal") and successful reperfusion (if obtained) End of procedure (up to 4 hours)
Secondary Periprocedural time (Time between randomization and successful reperfusion (if obtained)) Time between randomization and successful reperfusion (if obtained) End of procedure (up to 4 hours)
Secondary Procedure duration Time between arterial puncture and arterial closure End of procedure (up to 4 hours)
Secondary Intracranial hemorrhagic complications Rate of symptomatic intracranial haemorrhage at 6 months defined as any intracranial haemorrhage responsible for neurological deterioration (=4 NIHSS points compared to the lowest NIHSS score during management) 6 months
Secondary Distribution of intracranial hemorrhagic complications Distribution of intracranial hemorrhagic complications according to the Heidelberg classification 6 months
Secondary Serious extracranial hemorrhagic complications Rate of serious extra-cranial hemorrhagic complications at 6 months, defined as any extra-cranial bleeding complication requiring re-hospitalization and/or surgery and/or blood transfusion 6 months
Secondary All procedural complications Rate of all procedural complications, including vascular perforation, dissection, embolism in a territory not previously affected by the ischemia and serious complications on the arterial access (as defined below) Up to 6 months
Secondary Vascular perforation Rate of vascular perforation during the procedure End of procedure (up to 4 hours)
Secondary Dissection Rate of dissection during the procedure End of procedure (up to 4 hours)
Secondary Embolism in a territory not previously affected by the ischemia Rate of embolism in a territory not previously affected by the ischemia, during the procedure End of procedure (up to 4 hours)
Secondary Serious complication on the arterial access Rate of serious complications on the arterial access, defined as any superficial hematoma with deglobulisation [loss of 2 Hb points on the NFS] and/or requiring a transfusion, retroperitoneal hematoma with or without deglobulisation, arterial pseudo-aneurysm at the puncture site requiring surgical treatment, femoral artery occlusion and/or acute limb ischemia, puncture site abscess. 6 months
Secondary Vascular reocclusion Rate of vascular reocclusion on 24-hour imaging 24 hours
Secondary Adverse events Rate of adverse events at 6 months 6 months
Secondary Serious adverse events Rate of serious adverse events at 6 months 6 months
See also
  Status Clinical Trial Phase
Recruiting NCT06113848 - Adjunctive Use of Intra-Arterial TNK and Albumin Following Thrombectomy Phase 3
Completed NCT04069546 - The Efficacy of Remote Ischemic Conditioning on Stroke-induced Immunodeficiency N/A
Active, not recruiting NCT05700097 - Dengzhanxixin Injection for Acute Ischemic Stroke Receiving Reperfusion Therapy Phase 2
Recruiting NCT06058130 - Combination of Antiplatelet and Anticoagulation for AIS Patients Witn Concomitant NVAF and Extracranial/Intracranial Artery Stenosis N/A
Recruiting NCT04415164 - Evaluation of Xueshuantong in Patients With AcutE IschemiC STroke Phase 4
Recruiting NCT05363397 - Safety and Tolerability of Adjunctive TBO-309 in Reperfusion for Stroke Phase 2
Completed NCT05429658 - Single Arm Trial to Evaluate the Safety and Effectiveness of the Route 92 Medical Reperfusion System N/A
Recruiting NCT05390580 - Neuromodulation Using Vagus Nerve Stimulation Following Ischemic Stroke as Therapeutic Adjunct N/A
Enrolling by invitation NCT05515393 - A Study of XY03-EA Tablets in the Treatment of Acute Ischemic Stroke Phase 2
Active, not recruiting NCT05070260 - ACTISAVE: ACuTe Ischemic Stroke Study Evaluating Glenzocimab Used as Add-on Therapy Versus placEbo Phase 2/Phase 3
Terminated NCT05547412 - Validation of Velocity Curvature Index as a Diagnostic Biomarker Tool for Assessment of Large Vessel Stroke
Completed NCT03366818 - New Stent Retriever, VERSI System for AIS N/A
Not yet recruiting NCT06437431 - Glenzocimab in Anterior Stroke With Large Ischemic Core Eligible for Endovascular Therapy Phase 2/Phase 3
Not yet recruiting NCT06040476 - Human Umbilical Cord Blood Infusion in Patients With Acute Ischemic Stroke (AIS) Phase 2
Not yet recruiting NCT05293080 - Early Treatment of Atrial Fibrillation for Stroke Prevention Trial in Acute STROKE Phase 3
Completed NCT02223273 - Brazilian Intervention to Increase Evidence Usage in Practice - Stroke (BRIDGE-Stroke) N/A
Completed NCT02586233 - Study to Assess the Safety, Pharmacokinetics, and Pharmacodynamics of DS-1040b in Subjects With Acute Ischemic Stroke Phase 1/Phase 2
Not yet recruiting NCT01594190 - Physical Activity Immediately After Acute Cerebral Ischemia N/A
Terminated NCT01694381 - Research Into the Effect of a Clot-dissolving Agent and Its Inhibitor Early Phase 1
Completed NCT01120301 - Efficacy and Safety Trial of Transcranial Laser Therapy Within 24 Hours From Stroke Onset (NEST-3) Phase 3