View clinical trials related to Voice Disorders.
Filter by:This study will look for abnormalities in a brain of persons affected with spasmodic dysphonia, a form of movement disorder that involves involuntary "spasms" of the muscles in the vocal folds causing breaks of speech and affecting voice quality. The causes of this disorder are not known. The study will compare results of magnetic resonance imaging (MRI) in people with spasmodic dysphonia and in healthy volunteers. People with adductor or abductor spasmodic dysphonia and healthy volunteers may be eligible for this study. Candidates are screened with a medical history, physical examination, and a test called nasolaryngoscopy. For this test, the inside of the subject's nose is sprayed with a decongestant, and a small, flexible tube called a nasolaryngoscope is passed through the nose to the back of the throat to allow examination of the larynx (voice box). During this procedure, the subject is asked to perform tasks such as talking, singing, whistling, and saying prolonged vowels. The nasolaryngoscope is connected to a camera to record the movements of the vocal folds during these tasks. Eligible participants then undergo MRI of the brain. MRI uses a strong magnetic field and radio waves instead of x-rays to obtain images of body organs and tissues. For this test, the subject lies on a table that slides into the MRI scanner, a narrow metal cylinder, wearing ear plugs to muffle loud knocking sound that occurs during the scan. During MRI anatomical images of the brain are obtained. Subject may be asked to participate in up to two scanning sessions. Each session takes about 1-1/2 hours. Participants may also be asked to volunteer for a brain donation program which is optional. Information gained from donated tissue may lead to better treatments and potential cures for spasmodic dysphonia.
Some voice disorders are caused by uncontrolled muscle actions that affect the larynx or voice box. The purpose of this study is to understand 1) how the brain controls voice production; 2) how changes in sensation within the voice box affect brain control of the voice box; 3) how the central nervous system is affected when people have motor or sensory abnormalities that affect the voice box; and 4) whether patients with voice disorders differ from people without voice disorders in the way the brain controls the voice box. By better understanding these concepts, researchers hope to develop improved treatments for patients with voice disorders. Forty-five healthy adult volunteers and 90 patients with voice disorders will participate in this study. Participants must be between the ages of 20 and 70. The study will involve two visits to the Clinical Center. During the first visit, participants will undergo a medical history and physical exam. During the second visit, investigators will perform the following procedures on study participants: 1) look at the voice box with a nasolaryngoscope, a fine tube through the nose; 2) use MRI [magnetic resonance imaging] to record brain activity while participants use their voice to speak; 3) changing sensation in the voice box by dripping a topical anesthetic onto the vocal folds; and 4) using MRI to again record brain activity during speech immediately after applying the topical anesthetic. Participants will receive up to $700 in compensation for their involvement in this study.
This study will examine how dextromethorphan, a drug that alters reflexes of the larynx (voice box), might change voice symptoms in people with voice disorders due to uncontrolled laryngeal muscle spasms. These include abductor spasmodic dysphonia (breathy voice breaks), adductor spasmodic dysphonia (vowel breaks), muscular tension dysphonia (tight strained voice), and vocal tremor (tremulous voice). Dextromethorphan-one of a group of drugs called NMDA antagonists-has been used for years in over-the-counter cough suppressant medicines. In animal studies, the drug has blocked one of the reflexes in the larynx that may be associated with spasms in the laryngeal muscles. This study will compare the effects of dextromethorphan, lorazepam (a valium-type drug), and a placebo (inactive substance) in patients with the four types of voice disorders described above. Patients with spasmodic dysphonia, muscular tension dysphonia and vocal tremor may be eligible for this study. Individuals who smoke or use tobacco, who have vocal nodules or polyps, or who have a history of airway obstruction may not participate. Candidates will be screened with a medical history and physical examination, a questionnaire, voice recording (repeating sentences into a microphone), and nasolaryngoscopy (examination of the larynx with a tube advanced through the nose). For the nasolaryngoscopy, the inside of the nose is sprayed with a decongestant (to open the nasal passages) and possibly a local anesthetic. A small, flexible tube called a nasolaryngoscope is passed through the nose to look at the larynx during speech and other tasks, such as singing, whistling and prolonged vowels. Participants will be admitted to the NIH Clinical Center for each of three visits, which will last from the afternoon of one day to late afternoon of the following day. At each visit, patients will complete a questionnaire, baseline speech recording, and a test for sedation level. They will take three pills-either dextromethorphan, lorazepam, or placebo-one every 6 hours. Vital signs will be checked every 6 hours and the level of sedation during waking hours will be monitored. One to three hours after taking the third pill, speech recording, questionnaire and test of sedation will be repeated to check for possible voice changes. Patients will be given a different pill at each visit.
This study will investigate the brain areas that are activated by vocal and motor tics in patients with Tourette's syndrome and other tic disorders. Tics are involuntary repetitive movements similar to voluntary movements. They may be simple, involving only a few muscles or simple sounds, or complex, involving several groups of muscles in orchestrated bouts. This study will involve only simple motor tics, such as eye blinking, nose wrinkling, facial grimacing and abdominal tensing, and simple vocal tics, such as throat clearing, sniffing and snorting. Healthy normal volunteers and patients between 14 and 65 years of age with simple motor or vocal tics may be eligible for this study. Participants will have a brief medical history and physical examination and magnetic resonance imaging (MRI) of the brain. MRI uses a magnetic field and radio waves to produce images. For the procedure, the subject lies on a table that is moved into a cylindrical chamber containing a strong magnet. Earplugs are worn to muffle the loud thumping sounds made by electrical switching of the radio frequency circuits and protect against temporary hearing impairment. During the scan, normal volunteers will be asked to make simple movements or sounds designed to imitate tics, such as raising eyebrows, blinking or coughing. Patients with tic disorders will have two parts to the scanning session. First they will relax and allow tics to occur spontaneously, then they will be asked to imitate a specific tic when there is no urge to tic. Patients and healthy subjects will have electromyography (EMG) to record the timing of the voluntary movements and tics. For this procedure, several pairs of small, saucer-like electrodes are attached to the skin with a gel or paste. Electric signals from the electrodes are amplified and recorded on a computer. A microphone may be placed near patients to record any vocal tics. A video camera may also be used to record the tics.
This research study is designed to improve understanding about voice disorders that are due to uncontrolled muscle contractions affecting the voice box. The type of voice disorder depends on which muscles of the voice box are involved. Abductor spasmodic dysphonia may lead to a weak voice. Adductor spasmodic dysphonia may result in a strangled voice. Muscular tension dysphonia may lead to a strained voice. Some of the major goals of the study are to; 1. understand how sensation from the voice box affects voice and speech production 2. develop better ways to diagnose sensation abnormalities affecting the voice box 3. determine if patients with voice disorders differ from persons without voice disorders in the way they respond to sensory information from their voice box Researchers believe that by understanding better how sensations of the voice box are presented and how the muscles in the larynx respond to those sensations they will be able to develop better treatments for patients suffering from voice disorders. ...
The purpose the study is to determine the genetic causes of specific voice disorders that run in families. Researchers are particularly interested in two conditions; 1. Spasmodic dysphonia 2. Vocal fold paralysis Familial vocal fold paralysis can be a life-threatening disorder that can cause difficulty with vocal fold movement for breathing and voice and sometimes for swallowing. Studies are ongoing at the NIH to better understand the pathophysiology and to relate it to the genetic pattern of inheritance. Families are being recruited to participate in these studies and are being provided with further information on the disorder and genetic counseling if desired. Physician referral is requested for affected members of families with vocal fold paralysis of an unknown cause occurring over at least 2 generations. All travel, lodging, examination and counseling costs are covered for both affected and unaffected members of a family. Examinations include: voice, laryngeal, neurological, electrodiagnostic testing, genetic counseling, and radiological studies....