View clinical trials related to Ventilator Associated Pneumonia.
Filter by:Oral care with chlorhexidine was used to be considered an effective way to prevent ventilator-associated pneumonia (VAP). However, recent evidence revealed that oral care with chlorhexidine may associate with higher mortality and increasing risks of acute respiratory distress syndrome due to the aspiration of chlorhexidine. In addition, the majority of relevant studies in the past have only focused on cardiothoracic intensive care unit (ICU) or post-operation patients. Thus, whether this is effective and safe for medical ICU patients remains unclear.
It has been shown that oral hygiene reduces the incidence of ventilator-associated pneumonia (VAP). The nasopharynx is considered to be an important source of contaminated micro aspiration to the lung however, the effect of nasopharyngeal decontamination on VAP has not been yet investigated. The investigators hypothesized that decontamination of oral and nasopharyngeal cavities with combined Povidone Iodine and glycyrrhizin would remarkably reduce the incidence of VAP.
HAI (Hospital-acquired infection) is very common in ICUļ¼and lack of understanding of environmental exposure omics and environment-host microbial interactions restricts the prevention and control of HAI. In this project, the investigators try to analyze the spatial and temporal distribution characteristics and evolution of microorganisms and their functions in the ICU environment through metagenome.
Background: Invasive mechanical ventilation (MV) is used as a cornerstone in the treatment plan of intensive care units (ICUs) patients to provide adequate tissue oxygenation to support the body during the treatment course. Ventilator-associated pneumonia (VAP) is a preventable iatrogenic complication that can develop in patients undergoing mechanical ventilation. VAP is pneumonia that develops 2 days after endotracheal intubation; the patient must have new or progressive radiological infiltrate, infection alerts (e.g. fever, white blood cell count change), altered sputum characters, and isolation of a causative organism, all together to diagnose VAP. VAP is the most frequent hospital-acquired infection occurring in the ICUs and has a high associated mortality rate. Mortality rate for VAP ranges from 24-51%. Therefore, this study aims to evaluate the VAP preventive effect of the selected EPB and related nurses' education on the incidence and severity of VAP, as well as assess the nurses' compliance with the selected VAP preventive EBP Hypothesis: H1: Implementation of VAP prevention EBP and related nurses' education would reduce the incidence of VAP among mechanically ventilated patients compared to those receiving conventional care. H2: Implementation of VAP prevention EBP and related nurses' education would reduce the severity of VAP among mechanically ventilated patients compared to those receiving conventional care. Research question: Q1: What level of compliance do ICU staff have with implementing of VAP prevention EBP? Trial design The current study will utilize a prospective, longitudinal, single-arm design, pre & post-experimental. The research's purpose, risks, and potential benefits will be explained to all participants before their voluntary consent and recruitment into the study. Participation was completely voluntary, and written informed consent was obtained from all participants or their families. ICU nurses will receive tutorial sessions, including four hours of theory and six hours of clinical training in the clinical setting. The tutorial sessions will cover the proper implementation of ten VAP preventive bundles as an EVB. The clinical training will use a demonstration and redemonstration approach to learning to ensure that they understand and can implement the ten VAP preventive bundles efficiently. Participants sample and setting The study will be held at the ICU of the National Hepatology and Tropical Medicine Research Institute (Imbaba Fever Hospital) (NHTMRI-IFH), Giza, Egypt. The total capacity of the ICUs is 20 beds. Data collection procedure After obtaining ethical and administrative approval, informed consent will be obtained from eligible patients. The pre-experimental phase will be started by assessing VAP incidence and severity among the participating MV patients using tools 1 and 2, as well as ICU staff compliance to implement the VAP preventive bundle utilizing tool 3 as baseline data for 30-40 days. After finishing the pre-assessment, the following week will be considered washing time before starting the post-experimental time to ensure that all pre-assessment patients are discharged. During the washing time, the nurses will receive a tutorial session on how to implement the adopted VAP preventive bundle, and then the medical and nursing staff will start implementing the VAP preventive bundle in the post-experimental phase for 30-40 days. Tools 1, 2, and 3 will be utilized to evaluate VAP incidence, severity, and ICU staff compliance to implement the VAP preventive bundle. All data will be collected in an Excel sheet for potential statistical analysis.
The goal of this observational clinical trial is to learn about the role white blood cells (macrophages) play in lung inflammation in people with Acute Respiratory Distress Syndrome (ARDS). The main questions it aims to answer are: 1. How does the immune system respond to different kinds of lung injury and inflammation and how do those processes differ from each other? 2. What roles do the cells that live in the lungs (macrophages) play in turning off inflammation? How does their role differ from other cells that are called to the lung to help repair injury (recruited macrophages)? 3. Will more frequent testing of lung cell samples help reduce the time it takes to start treatment for ventilator-associated pneumonia (VAP) and therefore reduce the rates of initial therapy failure? Participants will be in the intensive care unit (ICU) on a mechanical ventilator (machine that helps patients breathe) because they have ARDS or are on a mechanical ventilator for some other reason (control group). The following will happen: 1. Participants will be given 100% oxygen through the breathing machine (mechanical ventilator) for 3-5 minutes. This is called pre-oxygenation. 2. A lung specialist (pulmonologist), a member of Dr. Janssen's research team, or respiratory therapist will place small amount of saline into the lung using a long catheter going through the breathing tube. 3. The fluid will be removed with suction and will be sent to the laboratory for testing. 4. This will be repeated two more times over the course of 10 days, or less if participants are taken off of the ventilator. The procedure will be performed no more than three times. 5. Two nasal brushings will be taken from the participants' nose. 6. Approximately 3 tablespoons of blood will be removed by putting a needle into the participants vein. This is the standard method used to obtain blood for tests. A total of 9 tablespoons will be taken for research purposes over the course of this study 7. Data including the participants age, sex, severity of illness, and other medical conditions will be recorded to determine how these can affect the white blood cells. 8. If bacteria are isolated from the fluid in the participants lung, the participants' physician may choose to place the participants on antibiotics to treat an infection. 9. A follow-up phone call may be made by a member of the research team after discharge from the hospital. At this time, the participant may be invited to participate in the Post-ICU clinic at National Jewish Health.
Critically ill patients are at high risk of acquiring pneumonia during the time that they are mechanically ventilated. This is known as ventilator-associated pneumonia (VAP). VAP results in increased duration of mechanical ventilation, increased ICU and hospital stay, increased risk of death and increased health care costs. VAP occurs in 20% of patients and it is estimated that each case of VAP costs the health care system $10 to 15,000 Canadian. Because of its impact on patient outcomes and the health care system, VAP is regarded as an important patient safety issue and there is an urgent need for better prevention strategies. Invasive mechanical ventilation requires the passage of an endotracheal tube (ETT) through the pharynx which is frequently colonized with bacterial pathogens and a bio-film rapidly forms on the ETT. VAP results either from aspiration of contaminated oropharyngeal secretions or from aspiration of bacteria from the bio-film. In this project, the efficacy of a novel ETT coated with an antibiotic compound that has been shown to reduce the formation of bio-film and pathogen colonization will be tested. Preliminary evidence as to whether utilization of this novel ETT reduces the occurrence of VAP and improves patient outcomes will be obtained through the conduct of a pragmatic, prospective, longitudinal, interrupted time, cross-over implementation study.
Ventilator-Associated Pneumonia (VAP) is a bacterial respiratory infection that patients in the Intensive Care Unit (ICU) often get when they cannot breathe for themselves and require mechanical ventilation. It is linked to higher chances of death, a longer stay in the hospital, higher costs, and the use of more antibiotics. Options to help prevent or treat this disease are in development and will require evaluation in future clinical trials. The goal of POS-VAP is to build and continuously train a network of ICUs to be prepared for doing these trials, to facilitate their execution.
Efficacy of cotrimoxazole as a de-escalation treatment for adult patients Ventilator-Associated Pneumonia in intensive care unit Multicentre randomized non-inferiority trial comparing cotrimoxazole to standard antibiotic therapy for enterobacterial VAP
A multicenter Phase 2 study to evaluate the pharmacokinetics, efficacy, and safety of intravenous BV100 combined with Polymyxin B in adult patients with VABP suspected or confirmed to be due to CRAB
Mechanically ventilated patients are at risk of developing ventilator-associated pneumonia (VAP). Invasive pulmonary aspergillosis (IPA), the diagnosis of which motivates the implementation of specific treatments, is one of the causes of VAP. The hypothesis of the study is that the incidence of IPA is 12.4%. For each patient presenting with a suspicion of VAP and requiring a bronchoalveolar lavage (BAL), the diagnosis of API will be evaluated by biological examinations performed on blood and BAL. Medical and surgical history as well as clinical and biological data will be collected for 28 days or until discharge from the ICU.