Inflammation Clinical Trial
Official title:
Quantification of Binding and Neutralizing Antibody Levels in COVID-19 Vaccinated Health Care Workers Over 1 Year
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presents a great challenge to global health. The first case was identified in December 2019 in Wuhan, China and since has infected nearly 100 million people and claimed almost 2 million lives worldwide. In response, the medical community and scientists have worked hard to develop effective therapies and guidelines to treat a wide range of symptoms including the use of the antiviral drug remdesivir, convalescent plasma, antibiotics, steroids, and anticoagulant therapy. To prevent the spread of the disease, multiple vaccines based on mRNA and DNA technologies that include inactivated viral components have been developed and millions of doses are currently being administered worldwide. Early analysis of data from the phase III Pfizer/BioNTech and Moderna vaccine trials suggested the vaccine was more than 90% effective in preventing the illness with a good safety profile (Polack et al., 2020). However, there are still many unknowns regarding the long-term safety of these newer vaccine technologies and the level and duration of immunogenicity. SARS-CoV-2 infection results in seroconversion and production of anti-SARS-CoV-2 antibodies. The antibodies may suppress viral replication through neutralization but might also participate in COVID-19 pathogenesis through a process termed antibody-dependent enhancement (Lu et al., 2020). Rapid progress has been made in the research of antibody response and therapy in COVID-19 patients, including characterization of the clinical features of antibody responses in different populations infected by SARS-CoV-2, treatment of COVID-19 patients with convalescent plasma and intravenous immunoglobin products, isolation and characterization of a large panel of monoclonal neutralizing antibodies and early clinical testing, as well as clinical results from several COVID-19 vaccine candidates. In this study, we plan to assess the effic of both vaccines on the healthcare workers. As healthcare workers begin to receive their first vaccination dosage, we will start looking for traces of antibodies within the blood and saliva. The data provided will help us determine the efficacy of the vaccine over a period of 1 year, identify any difference in efficacy amongst different populations (gender, age, and ethnicities) differences among vaccine types, demographics and follow-up on any potential side effects. We will collaborate with Nirmidas Biotech Inc. based in Palto Alto, California, a Stanford University spinoff on this project. Nirmidas Biotech. Inc is a young diagnostic company that have received several FDA EUA tests for COVID-19. We will perform IgG/IgM antibody detection by the NIRMIDAS MidaSpotā¢ COVID-19 Antibody Combo Detection Kit approved by FDA EUA for POC testing in our hospital site for qualitative antibody testing. We will then send dry blood spot and saliva to Nirmidas for the pGOLDā¢ COVID-19 High Accuracy IgG/IgM Assay to quantify antibody levels and avidity, both of which are important to immunity. The pGOLD assay is a novel nanotechnology assay platform capable of quantifying antibody levels and binding affinity to viruses. We collaborated recently with Nirmidas on this platform and published a joint paper in Nature Biomedical Engineering on COVID-19 Ab pGOLD assay (Liu et al., 2020). It is also capable of detecting antibodies in saliva samples and could offer a non-invasive approach to assessing antibody response for vaccination.
n/a
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT03995979 -
Inflammation and Protein Restriction
|
N/A | |
Completed |
NCT03255187 -
Effect of Dietary Supplemental Fish Oil in Alleviating Health Hazards Associated With Air Pollution
|
N/A | |
Completed |
NCT04507867 -
Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III
|
N/A | |
Completed |
NCT03577223 -
Egg Effects on the Immunomodulatory Properties of HDL
|
N/A | |
Completed |
NCT04383561 -
Relationship Between LRG and Periodontal Disease
|
N/A | |
Active, not recruiting |
NCT03622632 -
Pilot Study to Measure Uric Acid in Traumatized Patients: Determinants and Prognostic Association
|
||
Completed |
NCT06216015 -
Exercise Training and Kidney Transplantation
|
N/A | |
Completed |
NCT04856748 -
Nomogram to Diagnose Prostatic Inflammation (PIN) in Men With Lower Urinary Tract Symptoms
|
||
Completed |
NCT05529693 -
Efficacy of a Probiotic Strain on Level of Markers of Inflammation in an Elderly Population
|
N/A | |
Recruiting |
NCT05415397 -
Treating Immuno-metabolic Depression With Anti-inflammatory Drugs
|
Phase 3 | |
Recruiting |
NCT05670301 -
Flemish Joint Effort for Biomarker pRofiling in Inflammatory Systemic Diseases
|
N/A | |
Recruiting |
NCT05775731 -
Markers of Inflammation and of the Pro-thrombotic State in Hospital Shift and Day Workers
|
||
Recruiting |
NCT04543877 -
WHNRC (Western Human Nutrition Research Center) Fiber Intervention Study
|
Early Phase 1 | |
Completed |
NCT03859934 -
Metabolic Effects of Melatonin Treatment
|
Phase 1 | |
Completed |
NCT03429920 -
Effect of Fermented Soy Based Product on Cardiometabolic Risk Factors
|
N/A | |
Completed |
NCT06065241 -
Quantifiably Determine if the Botanical Formulation, LLP-01, Has a Significant Clinical Effect on Proteomic Inflammatory Biomarkers and Epigenetic Changes in Healthy, Older Individuals.
|
N/A | |
Completed |
NCT05864352 -
The Role of Dietary Titanium Dioxide on the Human Gut Microbiome and Health
|
||
Completed |
NCT03318731 -
Efficacy and Safety of Fenugreek Extract on Markers of Muscle Damage and Inflammation in Untrained Males
|
N/A | |
Not yet recruiting |
NCT06134076 -
Comparing Effects of Fermented and Unfermented Pulses and Gut Microbiota
|
N/A | |
Not yet recruiting |
NCT06159543 -
The Effects of Fresh Mango Consumption on Cardiometabolic Outcomes in Free-living Individuals With Prediabetes
|
N/A |