Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT02765399
Other study ID # LIRA
Secondary ID
Status Completed
Phase Phase 4
First received
Last updated
Start date February 1, 2015
Est. completion date February 28, 2019

Study information

Verified date April 2022
Source Helsinki University Central Hospital
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

This study aims to evaluate the mechanisms underlying the effect of incretin therapy on lipoprotein metabolism in subjects with type 2 diabetes and to study the effect of liraglutide on hepatic de novo lipogenesis.


Description:

The well recognized dyslipidemia in people with type 2 diabetes consists of high fasting and non-fasting plasma triglycerides (TG), low high-density lipoprotein (HDL) -cholesterol and preponderance of small dense low-density lipoprotein (LDL) particles nominated as the atherogenic lipid triad. Humans are mostly in a postprandial rather than fasting state and therefore non-fasting TG values reflect more accurately the continuous exposure of arterial wall to triglyceride rich lipoproteins (TRLs) and more importantly, to substantial cholesterol load that these particles deliver. Postprandial lipemia is highly prevalent even in type 2 diabetes patients with normal fasting TG concentrations. Intestinal overproduction of chylomicrons (CMs) and the structural protein apolipoprotein (apo)-B48 has been identified as an integral feature of postprandial lipemia in type 2 diabetes and insulin resistance. It is clinically important to elucidate the mechanism for delayed postprandial lipemia and the interactions between dysglycemia and dyslipidemia in type 2 diabetes patients.


Recruitment information / eligibility

Status Completed
Enrollment 23
Est. completion date February 28, 2019
Est. primary completion date February 28, 2019
Accepts healthy volunteers No
Gender All
Age group 30 Years to 75 Years
Eligibility Inclusion Criteria: - Subjects with type 2 diabetes treated with a lifestyle or metformin (any dose) - waist circumference > 88 cm in women and > 92 cm in men - BMI 27-40 kg/m2 - triglycerides between 1.0 - 4.0 mmol/L - LDL < 4.5 mmol/l Exclusion Criteria: - Type 1 diabetes - Apo E2/2 phenotype - ALT/AST > 3x ULN - GFR < 60 ml/min, clinically significant TSH outside normal range - Lipid-lowering drugs other than statins within 6 months - Current treatment with pioglitazone, insulin, sulphonylureas, gliptins, glinides, SGLT-2 inhibitors or thiazide diuretics (at a dose of > 25 mg / day) - Blood pressure > 160 mmHg systolic and/or > 105 diastolic - History of pancreatitis or stomach / other major bleeding, thyroid neoplasia, persistent hypothyroidism or persistent hyperthyroidism - Any medical condition that puts the patient in the risk of dehydration - Concurrent medical condition that may interfere with the interpretation of efficacy and safety data during the study. - Females of childbearing potential who are not using adequate contraceptive methods - Subjects who have experienced side-effects previously from GLP-1 agonists - Non-compliance or withdrawal of consent - Any information or clinical event described in liraglutide SPC that is a contraindication for the use of liraglutide

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
Liraglutide

Placebo


Locations

Country Name City State
Finland Helsinki University Central Hospital Helsinki

Sponsors (2)

Lead Sponsor Collaborator
Helsinki University Central Hospital Göteborg University

Country where clinical trial is conducted

Finland, 

References & Publications (6)

Björnson E, Packard CJ, Adiels M, Andersson L, Matikainen N, Söderlund S, Kahri J, Sihlbom C, Thorsell A, Zhou H, Taskinen MR, Borén J. Investigation of human apoB48 metabolism using a new, integrated non-steady-state model of apoB48 and apoB100 kinetics. — View Citation

Kernan WN, Inzucchi SE, Viscoli CM, Brass LM, Bravata DM, Shulman GI, McVeety JC, Horwitz RI. Pioglitazone improves insulin sensitivity among nondiabetic patients with a recent transient ischemic attack or ischemic stroke. Stroke. 2003 Jun;34(6):1431-6. Epub 2003 May 1. — View Citation

Matikainen N, Söderlund S, Björnson E, Pietiläinen K, Hakkarainen A, Lundbom N, Taskinen MR, Borén J. Liraglutide treatment improves postprandial lipid metabolism and cardiometabolic risk factors in humans with adequately controlled type 2 diabetes: A sin — View Citation

Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999 Sep;22(9):1462-70. — View Citation

Taskinen MR, Björnson E, Matikainen N, Söderlund S, Pietiläinen KH, Ainola M, Hakkarainen A, Lundbom N, Fuchs J, Thorsell A, Andersson L, Adiels M, Packard CJ, Borén J. Effects of liraglutide on the metabolism of triglyceride-rich lipoproteins in type 2 d — View Citation

Zech LA, Grundy SM, Steinberg D, Berman M. Kinetic model for production and metabolism of very low density lipoprotein triglycerides. Evidence for a slow production pathway and results for normolipidemic subjects. J Clin Invest. 1979 Jun;63(6):1262-73. — View Citation

Outcome

Type Measure Description Time frame Safety issue
Primary Change in Liver Fat Content Before vs after intervention (Liraglutide or placebo): mean liver fat content was measured by magnetic resonance imaging. Results from Matikainen et al. Diabetes Obes Metab 21:84-94; 2019. Baseline and after 16 weeks
Primary Plasma Triglyceride (TG) Area Under Curve (AUC) Before vs after intervention (Liraglutide or placebo): postprandial plasma TG summary measured using the trapezoidal rule and expressed as AUC (at fasting and at 0.5, 1, 2, 3, 4, 6 and 8 hours) after oral fat tolerance test. Results from Matikainen et al. Diabetes Obes Metab 21:84-94; 2019. Baseline and after 16 weeks
Primary Body Weight Before vs after intervention (Liraglutide or placebo): Change in body weight. Results from Matikainen et al. Diabetes Obes Metab 21:84-94; 2019. Baseline and after 16 weeks
Primary Change in HbA1c Level Before vs after intervention (Liraglutide or placebo): Change in B -Hemoglobiini-A1c level in plasma. Results from Matikainen et al. Diabetes Obes Metab 21:84-94; 2019. Baseline and after 16 weeks
Primary Change in fP-glucose Level Before vs after intervention (Liraglutide or placebo): concentration of fasting plasma glucose measured using the hexokinase method. Results from Matikainen et al. Diabetes Obes Metab 21:84-94; 2019. Baseline and after 16 weeks
Primary Change in Insulin Level Before vs after intervention (Liraglutide or placebo): Concentration of insulin level in plasma measured using electrochemiluminescence. Results from Matikainen et al. Diabetes Obes Metab 21:84-94; 2019. Baseline and after16 weeks
Primary Change in Matsuda Index Before vs after intervention (Liraglutide or placebo): Matsuda index was calculated for assessment of insulin sensitivity in plasma at time points 0, 30, 60 and 120 minutes using formula 10,000/square root of [fasting glucose x fasting insulin] x [mean glucose x mean insulin during oral glucose tolerance test]. The Matsuda index is considered to be the gold standard to determine insulin sensitivity without glucose clamp studies (Matsuda M, DeFronzo RA. Diabetes Care. 22:1462-70). Subjects who don't have insulin resistance have values of Matsuda Index of 2.5 or higher (Kerman WN et al. Stroke 34:1431;2003). Results from Matikainen et al. Diabetes Obes Metab 21:84-94; 2019. Baseline and after 16 weeks
Primary Change in VAT Area Before vs after intervention (Liraglutide or placebo): visceral adipose tissue area measured by magnetic resonance imaging (MRI). Results from Matikainen et al. Diabetes Obes Metab 21:84-94; 2019. Baseline and after 16 weeks
Primary Change in SAT Area Before vs after intervention (Liraglutide or placebo): subcutaneous adipose tissue area measured by magnetic resonance imaging (MRI). Results from Matikainen et al. Diabetes Obes Metab 21:84-94; 2019. Baseline and after 16 weeks
Primary Change in ApoCIII Level Before vs after intervention (Liraglutide or placebo): apolipoprotein CIII concentration in plasma measured by using turbidimetric immunoassay. Results from Matikainen et al. Diabetes Obes Metab 21:84-94; 2019. Baseline and after 16 weeks
Secondary Change in Hepatic de Novo Lipogenesis Before vs after intervention (Liraglutide or placebo): Hepatic DNL is calculated from enrichment of deuterated water ingested during the kinetic study at specified time points (0, 4 and 8 hrs.). Results from Matikainen et al. Diabetes Obes Metab 21:84-94; 2019. Baseline and after 16 weeks
Secondary Change in Systolic RR Before vs after intervention (Liraglutide or placebo): systolic blood pressure measurements. Results from Matikainen et al. Diabetes Obes Metab 21:84-94; 2019. Baseline and after 16 weeks
Secondary Mean Total Production of apoB48 Before vs after intervention (Liraglutide or placebo): ApoB48 total production in plasma measured by using multicompartmental modeling. The power of mathematical modelling to describe the metabolic pathways of lipid and lipoprotein metabolism was demonstrated by Zech L et al (JCI 63:1262;1979) and have been widely used over 30yrs. So far few studies have focused on the modelling of apo B48 and apo B100 after a meal that is more physiological than the fasting state (Björnson E et al. JIM 285:562;2019). Production rates for apo B48, apo B100 and triglycerides in chylomicrons, VLDL1 and VLDL2 were derived from samples taken before and after the tracer injection and after the meal at 0, 30, 45, 60, 75, 90,120, 150 min and at 3, 4, 5, 6, 8, 10, 24 hrs and averages for 24 hrs. Analysis of tracer/ tracee curves of stable isotopes was used to derived the estimates of kinetic parameters using a new mathematical modeling per day. Results from Taskinen et al. Diabetes Obes Metab. 23:1191; 2021. Baseline and after 16 weeks
Secondary Mean Production Rate of apoB48 in CM Before vs after intervention (Liraglutide or placebo): Change in mean production rate of ApoB48 in chylomicrons isolated from plasma samples and measured by multicompartmental modeling assay. The power of mathematical modelling to describe the metabolic pathways of lipid and lipoprotein metabolism was demonstrated by Zech L et al (JCI 1979). So far few studies have focused on the modelling of apo B48 and apo B100 after a meal that is more physiological than the fasting state (Björnson E et al. JIM 2019). Production rates for apo B48, apo B100 and triglycerides in chylomicrons, VLDL1 and VLDL2 were derived from samples taken before and after the tracer injection and after the meal at 0, 30, 45, 60, 75, 90,120, 150 min and at 3, 4, 5, 6, 8, 10, 24 hrs and averages for 24 hrs. Analysis of tracer/ tracee curves of stable isotopes was used to derived the estimates of kinetic parameters using a new mathematical modeling per day. Results from Taskinen et al. Baseline and after 16 weeks
Secondary Mean apoB48 FTR to VLDL1 Particles Before vs after intervention (Liraglutide or placebo): Change in apoB48 chylomicron fractional transfer rate to VLDL1 isolated from plasma by ultracentrifugation and by liquid chromatography/mass spectrometry and calculated with multicompartmental modeling assay. So far few studies have focused on the modelling of apo B48 and apo B100 after a meal that is more physiological than the fasting state (Björnson E et al. JIM 2019). Production rates for apo B48, apo B100 and triglycerides in chylomicrons, VLDL1 and VLDL2 were derived from samples taken before and after the tracer injection and after the meal at 0, 30, 45, 60, 75, 90,120, 150 min and at 3, 4, 5, 6, 8, 10, 24 hrs and averages for 24 hrs. Analysis of tracer/ tracee curves of stable isotopes was used to derived the estimates of kinetic parameters using a new mathematical modeling per day. Results from Taskinen et al. 2021. Baseline and after 16 weeks
Secondary Mean TG Fractional Catabolic Rates in CM Before vs after intervention (Liraglutide or placebo): Change in triglycerides fractional catabolic rates in isolated chylomicrons from plasma samples measured by multicompartmental modeling assay. The power of mathematical modelling to describe the metabolic pathways of lipid and lipoprotein metabolism was demonstrated by Zech L et al (JCI 1979). So far few studies have focused on the modelling of apo B48 and apo B100 after a meal that is more physiological than the fasting state (Björnson E et al. JIM 2019). Production rates for apo B48, apo B100 and triglycerides in chylomicrons, VLDL1 and VLDL2 were derived from samples taken before and after the tracer injection and after the meal at 0, 30, 45, 60, 75, 90,120, 150 min and at 3, 4, 5, 6, 8, 10, 24 hrs and averages for 24 hrs. Analysis of tracer/ tracee curves of stable isotopes was used to derived the estimates of kinetic parameters using a new mathematical modeling per day. Results from Taskinen et al. DOM 2021. Baseline and after 16 weeks
Secondary Mean CM FDC of apoB48 Before vs after intervention (Liraglutide or placebo): Change in chylomicron fractional direct clearance rates of apoB48 measured from plasma by liquid chromatography - mass spectrometry with multicompartmental modeling assay. The power of mathematical modelling to describe the metabolic pathways of lipid and lipoprotein metabolism was demonstrated by Zech L et al (1979). So far few studies have focused on the modelling of apo B48 and apo B100 after a meal that is more physiological than the fasting state (Björnson E et al. 2019). Production rates for apo B48, apo B100 and triglycerides in chylomicrons, VLDL1 and VLDL2 were derived from samples taken before and after the tracer injection and after the meal at 0, 30, 45, 60, 75, 90,120, 150 min and at 3, 4, 5, 6, 8, 10, 24 hrs and averages for 24 hrs. Analysis of tracer/ tracee curves of stable isotopes was used to derived the estimates of kinetic parameters using a new mathematical modeling per day. Results from Taskinen et al. 2021. Baseline and after 16 weeks
Secondary Change in Direct CM-apoB48 Clearance Before vs after intervention (Liraglutide or placebo): Direct apoB48 clearance rates in isolated chylomicrons and measured by liquid chromatography - mass spectrometry and calculated by multicompartmental modeling assay. The power of mathematical modelling to describe the metabolic pathways of lipid and lipoprotein metabolism was demonstrated by Zech L et al (1979). So far few studies have focused on the modelling of apo B48 and apo B100 after a meal that is more physiological than the fasting state (Björnson E et al. 2019). Production rates for apo B48, apo B100 and triglycerides in chylomicrons, VLDL1 and VLDL2 were derived from samples taken before and after the tracer injection and after the meal at 0, 30, 45, 60, 75, 90,120, 150 min and at 3, 4, 5, 6, 8, 10, 24 hrs and averages for 24 hrs. Analysis of tracer/ tracee curves of stable isotopes was used to derived the estimates of kinetic parameters using a new mathematical modeling per day. Results from Taskinen et al. 2021. Baseline and after 16 weeks
Secondary Mean CM-apoB48 Transfer Rates to VLDL1 Before vs after intervention (Liraglutide or placebo): Change in chylomicron-apoB48 transfer rates to VLDL1 isolated from plasma by ultracentrifugation and measured using multicompartmental modeling. The power of mathematical modelling to describe the metabolic pathways of lipid and lipoprotein metabolism was demonstrated by Zech L et al (1979). So far few studies have focused on the modelling of apo B48 and apo B100 after a meal that is more physiological than the fasting state (Björnson E et al. 2019). Production rates for apo B48, apo B100 and triglycerides in chylomicrons, VLDL1 and VLDL2 were derived from samples taken before and after the tracer injection and after the meal at 0, 30, 45, 60, 75, 90,120, 150 min and at 3, 4, 5, 6, 8, 10, 24 hrs and averages for 24 hrs. Analysis of tracer/ tracee curves of stable isotopes was used to derived the estimates of kinetic parameters using a new mathematical modeling per day. Results from Taskinen et al. 2021. Baseline and after 16 weeks
Secondary Mean VLDL1-TG Production Rates Before vs after intervention (Liraglutide or placebo): Change in VLDL1 production rates measured from isolated VLDL from plasma samples by ultracentrifugation and measured using mathematical modeling. The power of mathematical modelling to describe the metabolic pathways of lipid and lipoprotein metabolism was demonstrated by Zech L et al (JCI 1979). So far few studies have focused on the modelling of apo B48 and apo B100 after a meal that is more physiological than the fasting state (Björnson E et al. JIM 2019). Production rates for apo B48, apo B100 and triglycerides in chylomicrons, VLDL1 and VLDL2 were derived from samples taken before and after the tracer injection and after the meal at 0, 30, 45, 60, 75, 90,120, 150 min and at 3, 4, 5, 6, 8, 10, 24 hrs and averages for 24 hrs. Analysis of tracer/ tracee curves of stable isotopes was used to derived the estimates of kinetic parameters using a new mathematical modeling per day. Results from Taskinen et al. DOM 2021. Baseline and after16 weeks
Secondary Mean Fractional Catabolic Rate of VLDL2-apoB100 Before vs after intervention (Liraglutide or placebo): Change in VLDL2-apoB100 fractional catabolic rates measured from isolated VLDL2 from plasma by ultracentrifugation and measured using mathematical modeling. The power of mathematical modelling to describe the metabolic pathways of lipid and lipoprotein metabolism was demonstrated by Zech L et al (JCI 1979). So far few studies have focused on the modelling of apo B48 and apo B100 after a meal that is more physiological than the fasting state (Björnson E et al. JIM 2019). Production rates for apo B48, apo B100 and triglycerides in chylomicrons, VLDL1 and VLDL2 were derived from samples taken before and after the tracer injection and after the meal at 0, 30, 45, 60, 75, 90,120, 150 min and at 3, 4, 5, 6, 8, 10, 24 hrs and averages for 24 hrs. Analysis of tracer/ tracee curves of stable isotopes was used to derived the estimates of kinetic parameters using a new mathematical modeling per day. Results from Taskinen et al. DOM 2021. Baseline and after 16 weeks
See also
  Status Clinical Trial Phase
Completed NCT05219994 - Targeting the Carotid Bodies to Reduce Disease Risk Along the Diabetes Continuum N/A
Completed NCT04056208 - Pistachios Blood Sugar Control, Heart and Gut Health Phase 2
Completed NCT02284893 - Study to Evaluate the Efficacy and Safety of Saxagliptin Co-administered With Dapagliflozin in Combination With Metformin Compared to Sitagliptin in Combination With Metformin in Adult Patients With Type 2 Diabetes Who Have Inadequate Glycemic Control on Metformin Therapy Alone Phase 3
Completed NCT04274660 - Evaluation of Diabetes and WELLbeing Programme N/A
Active, not recruiting NCT05887817 - Effects of Finerenone on Vascular Stiffness and Cardiorenal Biomarkers in T2D and CKD (FIVE-STAR) Phase 4
Active, not recruiting NCT05566847 - Overcoming Therapeutic Inertia Among Adults Recently Diagnosed With Type 2 Diabetes N/A
Recruiting NCT06007404 - Understanding Metabolism and Inflammation Risks for Diabetes in Adolescents
Completed NCT04965506 - A Study of IBI362 in Chinese Patients With Type 2 Diabetes Phase 2
Recruiting NCT06115265 - Ketogenic Diet and Diabetes Demonstration Project N/A
Active, not recruiting NCT03982381 - SGLT2 Inhibitor or Metformin as Standard Treatment of Early Stage Type 2 Diabetes Phase 4
Completed NCT04971317 - The Influence of Simple, Low-Cost Chemistry Intervention Videos: A Randomized Trial of Children's Preferences for Sugar-Sweetened Beverages N/A
Completed NCT04496154 - Omega-3 to Reduce Diabetes Risk in Subjects With High Number of Particles That Carry "Bad Cholesterol" in the Blood N/A
Completed NCT04023539 - Effect of Cinnamomum Zeylanicum on Glycemic Levels of Adult Patients With Type 2 Diabetes N/A
Recruiting NCT05572814 - Transform: Teaching, Technology, and Teams N/A
Enrolling by invitation NCT05530356 - Renal Hemodynamics, Energetics and Insulin Resistance: A Follow-up Study
Completed NCT04097600 - A Research Study Comparing Active Drug in the Blood in Healthy Participants Following Dosing of the Current and a New Formulation (D) Semaglutide Tablets Phase 1
Completed NCT03960424 - Diabetes Management Program for Hispanic/Latino N/A
Completed NCT05378282 - Identification of Diabetic Nephropathy Biomarkers Through Transcriptomics
Active, not recruiting NCT06010004 - A Long-term Safety Study of Orforglipron (LY3502970) in Participants With Type 2 Diabetes Phase 3
Completed NCT03653091 - Safety & Effectiveness of Duodenal Mucosal Resurfacing (DMR) Using the Revita™ System in Treatment of Type 2 Diabetes N/A