Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT04972786
Other study ID # 20-623
Secondary ID
Status Recruiting
Phase N/A
First received
Last updated
Start date August 1, 2021
Est. completion date June 30, 2025

Study information

Verified date January 2024
Source University of New Mexico
Contact Jeremy Hogeveen, PhD
Phone 505-277-7505
Email jhogeveen@unm.edu
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

21 healthy control participants will be recruited. On Day 1 they will complete reward-guided decision making tasks and questionnaires followed by a functional magnetic resonance imaging (fMRI) scan. On Days 2 and 3 they will receive repetitive transcranial magnetic stimulation (rTMS) targeting a specific part of the brain called the dorsal anterior cingulate cortex (dACC) or sham stimulation, and will then repeat a subset of the same decision making tasks and fMRI sequences. If brain stimulation modifies decision making and dACC activity, it could represent a novel way of treating patients with neural circuit deficits that impede motivated behavior. Of particular relevance to the current trial, this rTMS study will run in parallel with a study of apathy (i.e., diminished motivation) in patients with traumatic brain injury (TBI), with the goal of eventually leading to a patient-centered trial of rTMS treatment for this disruptive neuropsychiatric symptom.


Description:

TBI is a common and impairing acquired neurological disorder caused by a concussive event to the head. Psychiatric disorders associated with impaired decision making-in particular: apathy, or diminished motivated behavior-are common post-injury in TBI. Despite the critical importance of diagnosing and characterizing psychiatric problems such as apathy in TBI, very little is known about the neuropathologies underlying apathy in this patient group. Reinforcement learning (RL)-i.e. the process of learning the reward value of stimuli and actions-represents a fundamental cross-species construct underlying motivated decision making. Further, aberrant reward processing has been strongly implicated in symptoms of apathy in the field of computational psychiatry. Despite extensive evidence that brain injuries can lead to maladaptive motivated decision making, the specific RL aberrations that might underlie this phenomenon, and their association with psychiatric sequelae remain unclear. Therefore, extant work has failed to provide insight into the computational mechanisms underlying maladaptive decision making in patients with TBI, and such work will be critical to build a better understanding of the neuropathologies that underlie apathy in TBI. This gap in current knowledge is being targeted by a related study from which healthy controls will be recruited for the current rTMS trial. However, even if we gain a better understanding of the RL neural mechanisms that cause aberrant motivated behavior and psychiatric sequelae in TBI, translating this into an actionable target for clinical intervention remains unclear. Psychological interventions including Cognitive-Behavioral Therapy (CBT) and Motivational Interviewing (MI) have been investigated for treating symptoms of TBI. However, the potential benefit of both CBT and MI is limited in TBI, as they both rely heavily on high-level cognitive abilities-e.g. selective attention, executive control, and metacognition/insight-that are commonly impaired in this population. In addition to psychotherapies, two categories of pharmacotherapy have been investigated to reduce psychiatric sequelae in TBI: selective serotonin reuptake inhibitors (SSRIs) and dopamine agonists. A randomized controlled trial of SSRIs for TBI failed to demonstrate reductions in patient neuropsychiatric symptoms after a 10-week intervention. Multiple pilot studies (Ns=10-11) of dopamine agonists for TBI have been conducted, demonstrating preliminary support that they may reduce apathy. Yet, a recent meta-analysis suggested a high degree of unreliability in the literature on dopamine agonism in TBI. Dopamine agonists also carry the risk of significant side effects including increased apathy or maladaptive impulsivity. Unreliability and maladaptive side effects of dopaminergic medications are likely driven by their lack of circuit-specificity: They modulate dopaminergic tone throughout the brain, rather than within a dedicated neural circuit underlying a specific symptom profile. Therefore, a more effective approach to treating apathy in TBI may involve both i) avoiding therapies that rely on high-level cognition, and ii) establishing circuit-specific approaches for ameliorating patient apathy. Precise fMRI-guided rTMS represents one possible approach. The current project aims to test the efficacy of fMRI-guided TMS to RL neural circuits anchored in dorsal anterior cingulate cortex (dACC) on motivated decision making in healthy controls. Ultimately, the hope is that this approach might represent a first step towards a potential clinical intervention for TBI patients with clinical apathy.


Recruitment information / eligibility

Status Recruiting
Enrollment 21
Est. completion date June 30, 2025
Est. primary completion date March 30, 2024
Accepts healthy volunteers Accepts Healthy Volunteers
Gender All
Age group 18 Years to 55 Years
Eligibility Inclusion Criteria: - 12 or more years of education - ability to provide informed consent independently Exclusion Criteria: - Non-fluency in English - Prior history of seizure - contraindications to MRI (metal in the body) - history of substance abuse (excluding moderate alcohol/cannabis usage) - medical diagnosis of psychosis or mania

Study Design


Intervention

Device:
Repetitive Transcranial Magnetic Stimulation
TMS pulses will be delivered through an air-cooled coil in either a figure-eight or double-cone shape, with the latter being particularly useful for targeting deeper structures such as dACC. The first phase of the TMS protocol will involve a standardized motor-thresholding procedure, wherein peripheral responses evoked by single TMS pulses are recorded via an electromyographic recording device. In this phase, the TMS coil's stimulation intensity is titrated to a level that is comfortable yet effective at reliably exciting neuronal populations orthogonal to the coil (50% motor-evoked potentials =50 microvolts; typical duration˜20-40 mins). Then repetitive TMS (rTMS) will be administered to a pre-determined cortical target based on the individual's pre-TMS fMRI scan using a Localite Neuronavigation system (duration˜10-20 mins). The rTMS protocol will involve the delivery of a train of TMS pulses over a cortical target prior to performance of behavioral tasks during a post-rTMS fMRI scan.

Locations

Country Name City State
United States University of New Mexico Domenici Hall Albuquerque New Mexico

Sponsors (1)

Lead Sponsor Collaborator
University of New Mexico

Country where clinical trial is conducted

United States, 

Outcome

Type Measure Description Time frame Safety issue
Primary Changes in task-related brain network activity centered around the dACC as measured by fMRI following rTMS. dACC encodes both the value and amount of effort required to perform a given decision. Both value and effort computations will be probed during fMRI before and after rTMS application to dACC. It is hypothesized that rTMS will modulate the BOLD response at dACC during both tasks. Further, it is hypothesized that brain regions known to be functionally connected to dACC (e.g. ventromedial prefrontal regions, subcortical circuits e.g. ventral striatum) may also demonstrate modulated neural recruitment post-rTMS. 30 minutes post-rTMS
Primary Changes in reliance on immediate expected value to guide decisions during a 3-armed Bandit reinforcement learning task. Given that dACC encodes information about the immediate expected value (IEV) of potential options, rTMS to dACC is expected to modulate reliance on IEV during 3-armed Bandit task performance. This will be assayed using a well-validated partially observable Markov decision process (POMDP) method for modelling normative performance on this task. 30 minutes post-rTMS
Primary Shifts in the effort-reward tradeoff. The degree to which participants discount potential rewards based on the amount of physical effort required to obtain them will be modulated by rTMS to dACC. 30 minutes post-rTMS
See also
  Status Clinical Trial Phase
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Recruiting NCT05503316 - The Roll of Balance Confidence in Gait Rehabilitation in Persons With a Lesion of the Central Nervous System N/A
Completed NCT04356963 - Adjunct VR Pain Management in Acute Brain Injury N/A
Completed NCT03418129 - Neuromodulatory Treatments for Pain Management in TBI N/A
Terminated NCT03698747 - Myelin Imaging in Concussed High School Football Players
Recruiting NCT05130658 - Study to Improve Ambulation in Individuals With TBI Using Virtual Reality -Based Treadmill Training N/A
Recruiting NCT04560946 - Personalized, Augmented Cognitive Training (PACT) for Service Members and Veterans With a History of TBI N/A
Completed NCT05160194 - Gaining Real-Life Skills Over the Web N/A
Recruiting NCT02059941 - Managing Severe Traumatic Brain Injury (TBI) Without Intracranial Pressure Monitoring (ICP) Monitoring Guidelines N/A
Recruiting NCT03940443 - Differences in Mortality and Morbidity in Patients Suffering a Time-critical Condition Between GEMS and HEMS
Recruiting NCT03937947 - Traumatic Brain Injury Associated Radiological DVT Incidence and Significance Study
Completed NCT04465019 - Exoskeleton Rehabilitation on TBI
Recruiting NCT04530955 - Transitioning to a Valve-Gated Intrathecal Drug Delivery System (IDDS) N/A
Recruiting NCT03899532 - Remote Ischemic Conditioning in Traumatic Brain Injury N/A
Suspended NCT04244058 - Changes in Glutamatergic Neurotransmission of Severe TBI Patients Early Phase 1
Completed NCT03307070 - Adapted Cognitive Behavioral Treatment for Depression in Patients With Moderate to Severe Traumatic Brain Injury N/A
Recruiting NCT04274777 - The Relationship Between Lipid Peroxidation Products From Traumatic Brain Injury and Secondary Coagulation Disorders
Withdrawn NCT05062148 - Fundamental and Applied Concussion Recovery Modality Research and Development: Applications for the Enhanced Recovery N/A
Withdrawn NCT04199130 - Cognitive Rehabilitation and Brain Activity of Attention-Control Impairment in TBI N/A
Withdrawn NCT03626727 - Evaluation of the Efficacy of Sodium Oxybate (Xyrem®) in Treatment of Post-traumatic Narcolepsy and Post-traumatic Hypersomnia Early Phase 1