View clinical trials related to Traumatic Brain Injury.
Filter by:This multicenter prospective observational study is designed to prospectively record data on patients who are managed per institutional standard of care. The objectives of this study are to establish an aggregate database of information on baseline clinical and demographic characteristics, medication use, markers of frailty, injury characteristics, management strategies, and outcomes following TBI in geriatric patients, determine best practices for management of geriatric patients with TBI, and establish how markers of frailty correlate with outcome in geriatric patients with TBI.
Gaining Real-life Skills Over the Web (GROW) is an online parenting-skills intervention for caregivers of children aged 0-4 who sustained traumatic brain injuries. GROW is designed to promote family and child coping and adjustment for caregivers.
The study population will consist of 3 mutually-exclusive sets of patients and subjects: - TBI patients with intracranial bleeding - TBI patients without intracranial bleeding - Control subjects with normal brain health. Research subjects between the ages of 22 to 50 will be enrolled. All TBI patients must have a diagnostic head CT scan within 24 hours of the injury. TBI patients without intracranial bleeding based on the CT scan must have a Glasgow Coma Scale (GCS) score at enrollment of ≤ 14. Total maximum duration of active monitoring with the device in this study is 48 hours with a clinical follow-up at day 7 after enrollment.
Adult male patients brought to the emergency department as Level A trauma activations who are receiving emergency blood transfusion. Objectives 1. Evaluate PRBC equivalents transfused in each group in the first 24 hours (Primary outcome) 2. Evaluate total transfusion in each group in the first 24 hours (Secondary Outcome) including breakdown by FFP equivalents, platelet units, and cryoprecipitate 3. Evaluate 6 hour, 24 hour, and hospital mortality (Secondary Outcome) 4. Evaluate ICU outcomes in each group
The pressure reactivity index (PRx) has emerged as a surrogate method for the continuous bedside estimation of global cerebral autoregulation and a significant predictor of unfavorable outcomes. However, calculations require continuous, high-resolution monitoring and are currently limited to specialized ICUs with dedicated software. To overcome this problem, new indices calculated using one-minute average data, instead of 10-second average data as performed by the PRx, have been proposed. The study aims to test new physiological indices appropriately modified to adapt to the scarcity of output data generated by standard hospital systems (frequency ~0.0033 Hz, approximately a 5-minute period) and to evaluate their association with outcome measures.
The goal of this study is to examine olfactory function in preclinical subjects or individuals with neurological diseases such as Probable Alzheimer's Disease (PRAD), Frontotemporal Dementias (FTD), Dementia with Lewy Bodies (DLB), Traumatic Brain Injury (TBI), and Amyotrophic Lateral Sclerosis (ALS).
When patients survive a severe brain injury but fail to fully recover, they often enter a Disorder of Consciousness (DoC) --that is, a set of related conditions of decreased awareness and arousal including the Vegetative State (VS) and the Minimally Conscious State (MCS). When these conditions become chronic, there are no approved treatments to help bolster any further recovery. In prior work, we have shown the clinical feasibility and potential of Low Intensity Focused Ultrasound Pulsation (LIFUP) as a remarkably safe form of non-invasive brain stimulation in these conditions.
Aerobic exercise is a promising treatment modality for cognition in persons with TBI, but effects are consistently small. This study aims to investigate the effect of difference environments during moderate intensity cycling sessions on cognition.
A Randomized Double-blind, Placebo-controlled, Multi-center Trial to determine the efficacy of NeuroAiD II™ (MLC901) in improvement of cognitive functioning of adult patients with long-term cognitive impairment following mild traumatic brain injury (mTBI) and to assess safety of NeuroAiD™ (MLC901) in these patients.
Patients with moderate traumatic brain injury (mTBI) are 1,5 times more frequent than those with severe TBI and some of them will develop secondary neurologic deterioration (SND) within the first 7 days. However, identifying at risk patients of SND is still challenging. This study aimed to determine risk factors associated with SND after mTBI.