View clinical trials related to Trauma, Brain.
Filter by:Utility of transcranial Doppler as an Early Predictor of Neurological deterioration in Mild and Moderate Traumatic Brain Injury
The purpose of this study is to determine whether a course of daily manual lymphatic drainage over the course of 5 days can improve lymphatic drainage function and cognitive outcomes and to determine whether single sessions of manual lymphatic drainage improves lymphatic drainage in moderate to severe traumatic brain injury (TBI) patients.
In this study, the single-cell transcriptome sequencing technology was used to study the transcriptome differences at the single-cell level in normal human brain, aging human brain, and epileptic brain.
The purpose of this study is to examine the combined effects of hypoxia and a short bout of subconcussive head impacts on neurocognitive and ocular-motor function and plasma expression of brain-derived blood biomarkers.
In response to "conscious" EEG findings related to detectable cognitive function that reliably denote awareness in vegetative state patients, in the current study, we will assess the covert conscious EEG activity (as well as standard clinical overt measures) and neuroplasctic propensity (i.e., changes in EEG spectral power synchronization values following tDCS intervention) in vegetative-state patients receiving repetitive transcranial direct current stimulation (tDCS) treatment over frontal motor areas for a period of two weeks. In support of this approach, a recent tDCS study with vegetative and minimally conscious patients implied that a twenty minutes anodal stimulation (i.e., excitatory stimulation) to the left dorsolateral prefrontal cortex (DLPFC) significantly increased CRS-R scores versus sham (placebo: non-active stimulation) stimulation condition. It was noted that this tDCS effect was more pronounced in minimally conscious state patients versus vegetative state patients excluding effects of chronicity or etiology. Thus, the investigators in this study suggested that tDCS could be effective in improving cognitive recovery in severely brain-injured patients. However, their findings would benefit neural activation correlates that could support their conclusion regarding the effectiveness of this type of non-invasive intervention in promoting neurocognitive recovery. Most importantly, tDCS is safe for use in humans, has no adverse effects, is considered the most non-invasive transcranial stimulation method because it uses extremely weak currents (0.5 to 2 mA), and, is known to only temporarily shift the neuron's membrane potential towards excitation/inhibition. In regard to the method's potential to induce functional recovery in vegetative state patients, recent clinical studies indicate that tDCS could counteract the negative effects of brain damage by influencing neurophysiological mechanisms, and is likely to contribute to the "formation of functionally meaningful connections and the maintenance of existing pathways" .
To assess the impact of a 12-week virtual seated physical intervention on cardiovascular health and wellness in people with chronic neurological impairments (CNI).
The aim of this study is to evaluate whether the addition of amantadine to the management regimen of traumatic brain injury patients would have a favorable effect on recovery and neurological complications in association with prognosis biomarkers Interleukin-18 (IL-18), Neuron-specific enolase (NSE) and (Neurotensin).
The effect of endotracheal cuff pressure measurement technique for preventing ventilatory associated pneumonia.
Lay Summary: To evaluate a novel early diagnostic tool for hospitalized children with traumatic brain injury. The Problem: Children who present with decreased level of consciousness after injury require urgent medical attention determined by the type and the severity of injury. Unfortunately, history and physical findings are often unreliable in the first hours after hospitalization, the period in which urgent management decisions must be made for their treatment. The Solution: A promising tool developed for measuring detectable evidence of traumatic brain injury on routine brain scans. The tool combines features invisible to the human eye but detectable by computer software with expert knowledge.This study will evaluate how well the tool can perform in a real health care setting. It is believed that it will greatly improve the efficacy and quality of care provided to children after traumatic brain injury.
We assume that an early iterative automatic CT scan analysis (D0, D1 and D3) by different AI approaches will allow an early differentiation of the tissues evolution after TBI. Our objective is to couple theses scan profiles to a neurological evolution, measured by therapeutic intensity.