Clinical Trials Logo

Tetraplegia clinical trials

View clinical trials related to Tetraplegia.

Filter by:
  • Recruiting  
  • Page 1 ·  Next »

NCT ID: NCT06288763 Recruiting - Tetraplegia Clinical Trials

Nerve Transfer to Improve Function in High Level Tetraplegia

Start date: February 5, 2024
Phase:
Study type: Observational

The goal of this observational study is to determine if nerve transfer surgeries improve upper extremity function and quality of life in patients with a high level cervical spinal cord injury. Participants will: - undergo standard of care pre- and post-op testing and study exams - complete pre- and post-questionnaires - undergo standard of care nerve transfer surgeries - follow-up with surgeon at 6/12/18/24/36 and potentially at 48 months - attend therapy at local therapist for up to 2 years postop.

NCT ID: NCT06094205 Recruiting - Clinical trials for Spinal Cord Injuries

Feasibility of the BrainGate2 Neural Interface System in Persons With Tetraplegia (BG-Speech-02)

BG-Speech-02
Start date: October 2024
Phase: N/A
Study type: Interventional

The goal of this study is to improve our understanding of speech production, and to translate this into medical devices called intracortical brain-computer interfaces (iBCIs) that will enable people who have lost the ability to speak fluently to communicate via a computer just by trying to speak.

NCT ID: NCT05885139 Recruiting - Cerebral Palsy Clinical Trials

Exopulse Mollii Suit, Motor Functions & CP Children With Cerebral Palsy

EXOCEP2GER
Start date: April 17, 2023
Phase: N/A
Study type: Interventional

Cerebral Palsy (CP) is is estimated to be around 1.5-3 per live birth, with prenatal factors accounting for 75% of cases. CP appears in early childhood and persists with age and is characterized by permanent lesions or abnormalities affecting the immature brain. It mainly occurs as a motor system disorder (e.g., abnormal movements or posture) with the presence of hemiplegia, diplegia or tetraplegia, and spastic, dyskinetic or atactic syndromes. .This study will explore the potential clinical benefits of the Molliimethod in children with cerebral palsy. Spasticity impacts balance and mobility, halts the patients quality of life and their ability to perform their activity of daily living, and could also increase the risk of fractures and falls. Available interventions that aim on improving spasticity are facing limitations such as varios side effects. Therefore, developing novel therapies such as the EXOPULSE Mollii Suit could help to overcome such limitations and noninvasively improve balance, mobility, quality of life and reduce spasticity and pain in children with CP.

NCT ID: NCT05776862 Recruiting - Insulin Resistance Clinical Trials

Study Testing Benefits of Ursolic Acid (UA) as a Countermeasure To Myopenia and Insulin Resistance in Chronic Spinal Cord Injury (SCI)

Start date: March 27, 2023
Phase: Phase 2
Study type: Interventional

This study will evaluate if Ursolic Acid supplementation may be effective in reducing muscle loss and improving blood sugar control in the SCI community.

NCT ID: NCT05724173 Recruiting - Clinical trials for Spinal Cord Injuries

Feasibility of the BrainGate2 Neural Interface System in Persons With Tetraplegia

BG-Speech-01
Start date: October 18, 2023
Phase: N/A
Study type: Interventional

The purpose of this study is to obtain preliminary device safety information and demonstrate proof of principle (feasibility) of the ability of people with tetraplegia to control a computer cursor and other assistive devices with their thoughts.

NCT ID: NCT05665998 Recruiting - Tetraplegia Clinical Trials

Brain Controlled Spinal Cord Stimulation in Participants With Cervical Spinal Cord Injury for Upper Limb Rehabilitation

UP2
Start date: May 22, 2023
Phase: N/A
Study type: Interventional

Cervical spinal cord stimulation can elicit arm and hand movements through recruitment of proprioceptive neurons in the dorsal roots. In participants with cervical spinal cord injury, the spare roots bellow the lesion can be used to reactivate motor function. Decoding of motor intentions can be achieved through implantable electrocorticography (ECoG) devices. In this study, the investigators will use an investigational system using ECoG signal recording over the motor cortex to drive muscle specific electrical epidural spinal cord stimulation (EES). The investigators will assess the safety and preliminary efficacy of this system in 3 participants.

NCT ID: NCT05638191 Recruiting - Spinal Cord Injury Clinical Trials

Nerve Transfer Surgery to Restore Upper-limb Function After Cervical Spinal Cord Injury

Start date: June 3, 2021
Phase:
Study type: Observational [Patient Registry]

The goal of this prospective, open label cohort study is to assess functional and motor outcomes in individuals with cervical spinal cord injury who have undergone nerve transfer surgery, with the goal of increasing upper limb function. We will also compare these outcomes to a cohort of similarly matched individuals who have not undergone nerve transfer surgery, using robust outcome measures, rigorous pre-operative clinical and neurophysiological assessments, and standardized rehabilitation. At the end of this project we aim to develop a model for predicting nerve transfer outcomes using pre-operative clinical and neurophysiological characteristics.

NCT ID: NCT05553457 Recruiting - Clinical trials for Spinal Cord Injuries

MyHand-SCI: An Active Hand Orthosis for Spinal Cord Injury

Start date: October 4, 2022
Phase: N/A
Study type: Interventional

The purpose of this study is to develop and test the hardware and software components of the MyHand-SCI device to assist with hand function for individuals with C6-C7 spinal cord injury.

NCT ID: NCT05432999 Recruiting - Clinical trials for Spinal Cord Injuries

Extracorporeal Shockwave Therapy for Spasticity in People With Spinal Cord Injury

Start date: September 1, 2022
Phase: N/A
Study type: Interventional

People with spinal cord injury (SCI) experience a host of secondary complications that can impact their quality of life and functional independence. One of the more prevalent complications is spasticity, which occurs in response to spinal cord damage and the resulting disruption of motor pathways. Common symptoms include spasms and stiffness, and can occur more than once per hour in many people with SCI. Spasticity can have a negative impact over many quality of life domains, including loss of functional independence, activity limitations, and even employment. Its impact on health domains is also pronounced, with many people who have spasticity reporting mood disorders, depression, pain, sleep disturbances, and contractures. Spasticity can interfere with post-injury rehabilitation and lead to hospitalization. There are many treatments for spasticity in this population. However, many do not have long-term efficacy, and, if they do, they are often pharmacological in nature and carry side effects that could limit function or affect health. The goal of this pilot, randomized-controlled study is to investigate the potential efficacy and safety of a non-invasive treatment with a low side effect profile, extracorporeal shockwave therapy (ESWT). ESWT has shown some benefits in people with post-stroke spasticity with no long term side effects. Thirty individuals with chronic, traumatic SCI will be recruited. Fifteen will be provided with ESWT while the other fifteen will be given a sham treatment. Clinical and self-report measures of spasticity and its impact on quality of life will be collected, as well as quantitative ultrasound measures of muscle architecture and stiffness. The ultimate goal of this pilot project is to collect the data necessary to apply for a larger randomized-controlled trial. Conducting a larger trial will allow for a more powerful estimation of safety and efficacy of ESWT as a treatment for spasticity in people with SCI.

NCT ID: NCT04736849 Recruiting - Clinical trials for Spinal Cord Injuries

Epidural and Dorsal Root Stimulation in Humans With Spinal Cord Injury

Start date: September 24, 2021
Phase: N/A
Study type: Interventional

A study to compare electrophysiologic activity of epidural stimulation and dorsal root ganglion stimulation, as well as quantify changes in motor performance with both types of stimulation over the course of 10 rehabilitation sessions.